Patents Assigned to The Johns Hopkin University
  • Patent number: 10774112
    Abstract: Mimetic peptides having anti-angiogenic and anti-tumorigenic properties and methods of their use for treating cancer, ocular diseases, such as age-related macular degeneration, and other-angiogenesis-dependent diseases are disclosed. More particularly, an isolated peptide comprising the amino acid sequence LRRFSTAPFAFIDINDVINF, which exhibits anti-angiogenic activity in endothelial cell proliferation, migration, adhesion, and tube formation assays, anti-migratory activity in human breast cancer cells in vitro, anti-angiogenic and anti-tumorigenic activity in vivo in breast cancer xenograft models, and age-related macular degeneration models is disclosed. The isolate peptide also exhibits anti-lymphangiogenic and directly anti-tumorigenic properties.
    Type: Grant
    Filed: September 22, 2017
    Date of Patent: September 15, 2020
    Assignee: THE JOHNS HOPKINS UNIVERSITY
    Inventors: Aleksander S. Popel, Niranjan B. Pandey, Esak Lee, Jordan J. Green, Ron B. Shmueli
  • Patent number: 10774387
    Abstract: Methods of the present disclosure provide for detection of mutations and splice variants of the androgen receptor using a non-invasive approach, RNAseq, for examining circulating tumor cells.
    Type: Grant
    Filed: May 19, 2015
    Date of Patent: September 15, 2020
    Assignee: THE JOHNS HOPKINS UNIVERSITY
    Inventors: Jun Luo, Emmanuel S. Antaonarakis, Changxue Lu
  • Patent number: 10774110
    Abstract: A compound of Formula (I), and its analogs are provided. Compositions that include Formula I can be used to inhibit human equilibrative nucleoside transporter 1, increase adenosine signaling and produce effects that include increasing antiviral activity, increasing antiparasitic activity, increasing alcohol tolerance, decreasing pain protecting from ischemia as well as many other conditions.
    Type: Grant
    Filed: February 3, 2017
    Date of Patent: September 15, 2020
    Assignee: The Johns Hopkins University
    Inventors: Jun Liu, Jingxin Wang, Zhaoli Sun, Sam Hong
  • Patent number: 10774389
    Abstract: This invention relates, e.g., to a method for determining if a thyroid tumor in a subject is malignant, comprising determining in a sample from the subject the amount of TERT (telomerase reverse transcriptase) mRNA which lacks the ? sequence and the amount of TERT mRNA in the sample which comprises the ? sequence, wherein a preponderance (e.g., at least about 55%) of TERT mRNA in the sample which comprises the ? sequence indicates that the tumor is malignant, and wherein a preponderance of TERT mRNA which lacks the ? sequence indicates that the tumor is not malignant.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: September 15, 2020
    Assignee: The Johns Hopkins University
    Inventors: Martha Allen Zeiger, Jeanne Kowalski, Christopher Umbricht, Yongchun Wang
  • Patent number: 10765399
    Abstract: A digital electronic stethoscope includes an acoustic sensor assembly that includes a body sensor portion and an ambient sensor portion, the body sensor portion being configured to make acoustically coupled contact with a subject while the ambient sensor portion is configured to face away from the body sensor portion so as to capture environmental noise proximate the body sensor portion; a signal processor and data storage system configured to communicate with the acoustic sensor assembly so as to receive detection signals therefrom, the detection signals including an auscultation signal comprising body target sound and a noise signal; and an output device configured to communicate with the signal processor and data storage system to provide at least one of an output signal or information derived from the output signal.
    Type: Grant
    Filed: October 31, 2016
    Date of Patent: September 8, 2020
    Assignee: The Johns Hopkins University
    Inventors: Dimitra Emmanouilidou, James E. West, Mounya Elhilali, Ian Mclane
  • Patent number: 10765336
    Abstract: A method of planning a patient-specific cardiac procedure according to an embodiment of the current invention includes receiving three-dimensional imaging data of a patient's heart, simulating at least one of electrophysiological or electromechanical activity of at least a portion of the patient's heart using the three-dimensional imaging data, and planning the patient-specific cardiac procedure based on the simulating. The cardiac procedure is for providing a preselected alteration of at least one of electrophysiological or electromechanical behavior of the patient's heart.
    Type: Grant
    Filed: February 10, 2012
    Date of Patent: September 8, 2020
    Assignee: The Johns Hopkins University
    Inventors: Natalia A. Trayanova, Henry R. Halperin, Hermenegild Arevalo, Jason Constantino
  • Patent number: 10771135
    Abstract: An example apparatus for establishing a communications link is provided. The example apparatus may include a phased array antenna, a radio frequency beamformer, and a processor. The processor may be in operable communication with the radio frequency beamformer and configured to operate as an antenna controller. As the antenna controller, the processor may be configured to direct the radio frequency beamformer to steer an antenna beam generated by the phased array antenna in a plurality of beam directions across an operating range of the phased array antenna, determine a signal strength of a source signal received by the phased array antenna at each beam direction, determine a current beam direction, and direct the radio frequency beamformer to steer the antenna beam to the current beam direction.
    Type: Grant
    Filed: February 2, 2017
    Date of Patent: September 8, 2020
    Assignee: The Johns Hopkins University
    Inventors: Colin Z. Sheldon, Marshall J. Jose, Robert F. Henrick, Jennifer N. Dumiak
  • Patent number: 10760128
    Abstract: The present invention relates to methods of detecting novel mutations in a PKD1 and/or PKD2 gene that have been determined to be associated with autosomal dominant polycystic kidney disease (ADPKD) in order to detect or predict the occurrence of ADPKD in an individual.
    Type: Grant
    Filed: May 28, 2014
    Date of Patent: September 1, 2020
    Assignees: ATHENA DIAGNOSTICS, INC., THE JOHNS HOPKINS UNIVERSITY
    Inventors: Terry J. Watnick, Miguel Garcia-Gonzalez, Gregory G. Germino, Jeffery G. Jones
  • Patent number: 10759066
    Abstract: An attachment device includes a robot-engaging portion having a recess formed in an outer surface thereof for receiving a finger of a robot. The attachment device also includes a tool-engaging portion coupled to the robot-engaging portion. The tool-engaging portion is configured to be coupled to a tool that is to be used by the robot to perform a task. A damping member is positioned at least partially between the robot-engaging portion and the tool-engaging portion. The damping member is configured to be adjusted to vary a magnitude of oscillations that are transferred from the tool-engaging portion to the robot-engaging portion.
    Type: Grant
    Filed: August 19, 2019
    Date of Patent: September 1, 2020
    Assignee: THE JOHNS HOPKINS UNIVERSITY
    Inventor: Kelleher Guerin
  • Patent number: 10759792
    Abstract: The present invention provides compounds useful as inhibitors of Ca2+/calmodulin-dependent protein kinase (CaMKII), compositions thereof, and methods of using the same.
    Type: Grant
    Filed: September 4, 2015
    Date of Patent: September 1, 2020
    Assignee: The Johns Hopkins University
    Inventors: Daniel Emil Levy, Howard Schulman, Bheema Rao Paraselli, Nangunoori Sampath Kumar, Brahmaiah Dabbugoddu, Chundru Balasubramanyam
  • Patent number: 10758209
    Abstract: An intraoperative registration and tracking system includes an optical source configured to illuminate tissue intraoperatively with electromagnetic radiation at a substantially localized spot so as to provide a photoacoustic source at the substantially localize spot, an optical imaging system configured to form an optical image of at least a portion of the tissue and to detect and determine a position of the substantially localized spot in the optical image, an ultrasound imaging system configured to form an ultrasound image of at least a portion of the tissue and to detect and determine a position of the substantially localized spot in the ultrasound image, and a registration system configured to determine a coordinate transformation that registers the optical image with the ultrasound image based at least partially on a correspondence of the spot in the optical image with the spot in the ultrasound image.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: September 1, 2020
    Assignee: The Johns Hopkins University
    Inventors: Emad M. Boctor, Russell H. Taylor, Jin U. Kang
  • Patent number: 10758630
    Abstract: A topical composition includes a nanoemulsion of a plurality of hydrophobic particles having a hydrophilic coating therein. The hydrophobic particles are derived from the same or different hydrophobic material and each hydrophobic particle has a melting point below the melting point of the respective hydrophobic material. The hydrophobic particles comprise a mean particle size of less than about 10 nm, and the nanoemulsion further includes one or more pharmaceutically active agents.
    Type: Grant
    Filed: September 19, 2012
    Date of Patent: September 1, 2020
    Assignee: The Johns Hopkins University
    Inventors: Jennifer L. Sample, Julia B. Patrone, Jason J. Benkoski, Jennifer L. Breidenich, Lisa A. Kelly, Huong Le, James C. Crookston, Marcia W. Patchan, Luis Garza, Xiomara Calderon-Colon, Joshua T. Wolfe, Mellisa L. Theodore, Amanda Nelson, Sewon Kang
  • Patent number: 10763961
    Abstract: A device includes an optical fiber bundle having at least one optical data fiber and at least three optical tracking fibers, a mirror package configured to direct an incoming optical beam to the optical fiber bundle, at least three detectors, each detector corresponding to one of the at least three optical tracking fibers, the at least three detectors configured to receive portions of the incoming optical beam from the corresponding optical tracking fibers and convert the portions of the incoming beam to electrical tracking signals, and a controller configured to receive the electrical tracking signals from the at least three detectors and generate a feedback control based on the electrical tracking signals to control a position of the mirror package.
    Type: Grant
    Filed: August 31, 2019
    Date of Patent: September 1, 2020
    Assignee: The John Hopkins University
    Inventors: Katherine T. Newell, Juan C. Juarez, Michelle P. O'Toole, Radha A. Venkat, Lauren S. Weiss, Ryan P. DiNello-Fass
  • Patent number: 10758487
    Abstract: Compositions and methods comprising asymmetrical artificial antigen presenting cells (aAPCs) are disclosed. The non-spherical aAPCs more closely mimic endogenous cell-cell interactions and can be used for antigen-specific immunotherapy.
    Type: Grant
    Filed: December 10, 2012
    Date of Patent: September 1, 2020
    Assignee: THE JOHNS HOPKINS UNIVERSITY
    Inventors: Jordan J. Green, Joel C. Sunshine, Karlo Perica, Jonathan Schneck
  • Patent number: 10751306
    Abstract: Methods for treating or preventing liver fibrosis in a subject by administering to the subject a therapeutically effective amount of 3-bromopyruvate (3-BrPA) are provided. In addition, methods for promoting the reversal of an activated hepatic stellate cell (HSC) to an inactivated HSC by contacting the activated HSC with at least one 3-bromopyruvate (3-BrPA) molecule are also provided.
    Type: Grant
    Filed: November 4, 2016
    Date of Patent: August 25, 2020
    Assignee: The Johns Hopkins University
    Inventors: Shanmugasundaram Ganapathy-Kanniappan, Surojit Sur, Bert Vogelstein, Kenneth W. Kinzler, Jean-Francois Geschwind
  • Patent number: 10752953
    Abstract: Provided herein is a method of detecting cancer through generalized loss of stability of epigenetic domains as well as compositions useful therein. The present invention is based on the discovery that generalized loss of stability of epigenetic domains was determined to be a characteristic across various cancer types. Genome-scale bisulfite sequencing of cancers revealed a surprising loss of methylation stability in the cancer methylome, involving both CpG islands and shores, as well as large (up to several megabases) blocks of hypomethylation affecting more than half of the genome, with concomitant stochastic variability in gene expression.
    Type: Grant
    Filed: May 10, 2012
    Date of Patent: August 25, 2020
    Assignee: The Johns Hopkins University
    Inventors: Andrew P. Feinberg, Rafael I. Irizarry
  • Patent number: 10753892
    Abstract: The invention features a novel non-invasive approach for imaging, detecting and/or sensing metal ions with improved sensitivity and specificity in a biological sample or tissue. In certain embodiments, the invention provides a MR contrast-based approach for imaging, detecting and/or sensing metal ions in the biological sample/tissue containing various background ions by using 19F-based chemical exchange saturation transfer (CEST) technique.
    Type: Grant
    Filed: April 18, 2014
    Date of Patent: August 25, 2020
    Assignee: The Johns Hopkins University
    Inventors: Amnon Bar-Shir, Jeff W. M. Bulte, Michael T. McMahon
  • Patent number: 10750890
    Abstract: An embodiment in accordance with the present invention is directed to a spill-proof cup. The cup includes an innovative mechanisms to allow for a completely spill-proof and ergonomic cup. The cup functions in the same manner as a regular cup. In some embodiments the spill-proof feature of the cup is facilitated by a weight that will fall down when the cup is tilted. In other embodiments, chambers are filled with liquid to control flow and only allow the user a volume of one sip of liquid at a time. As a result of these specialized embodiments, the cup does not consume electricity, is safe to use, and costs little both to make and to purchase.
    Type: Grant
    Filed: May 31, 2016
    Date of Patent: August 25, 2020
    Assignees: The Johns Hopkins University, Kennedy Krieger Institute, Inc.
    Inventors: Yu Xu, Nathaniel J. Leon, Tara Johnson, Alexander De La Vega
  • Patent number: 10743775
    Abstract: A device for measuring a ventricular-arterial coupling of a subject includes first and second inputs. The first input receives signals from a plurality of electrocardiogram sensors that are coupled to the subject at a plurality of first locations. The second input receives signals from a plurality of photoplethysmogram sensors that are coupled to the subject at a plurality of second locations. The second locations are selected from the group consisting of a head of the subject, an arm of the subject, and a leg of the subject. The signals received from the electrocardiogram sensors and the signals received from the photoplethysmogram sensors are received simultaneously. The device also includes a monitor configured to display the signals from the electrocardiogram sensors and the signals from the photoplethysmogram sensors.
    Type: Grant
    Filed: October 24, 2017
    Date of Patent: August 18, 2020
    Assignee: THE JOHNS HOPKINS UNIVERSITY
    Inventors: Viachaslau Barodka, Yurie Obata
  • Patent number: 10748277
    Abstract: Tissue is characterized using machine-learnt classification. The prognosis, diagnosis or evidence in the form of a similar case is found by machine-learnt classification from features extracted from frames of medical scan data. The texture features for tissue characterization may be learned using deep learning. Using the features, therapy response is predicted from magnetic resonance functional measures before and after treatment in one example. Using the machine-learnt classification, the number of measures after treatment may be reduced as compared to RECIST for predicting the outcome of the treatment, allowing earlier termination or alteration of the therapy.
    Type: Grant
    Filed: September 9, 2016
    Date of Patent: August 18, 2020
    Assignees: Siemens Healthcare GmbH, The Johns Hopkins University
    Inventors: Shaohua Kevin Zhou, David Liu, Berthold Kiefer, Atilla Peter Kiraly, Benjamin L. Odry, Robert Grimm, Li Pan, Ihab Kamel