Abstract: A tire valve assembly includes a stem and a valve unit. The valve unit includes a movable part and a seal member. When introducing pressurized air into the tire valve assembly, the valve unit moves to a position in the stem to allow the pressurized air to flow into the tire. When the pressurized air is stopped from entering the tire valve assembly, the valve unit is pushed back by the pressure in the tire to seal the inlet so that the pressurized air in the tire does not leak to keep the tire pressure.
Abstract: A tire valve assembly includes a valve shaft movably inserted into a first diameter section of the outer tube. The valve shaft includes a passage and a radial hole which communicates with the passage. A first seal is mounted to the end of the valve shaft that is inserted into the outer tube and is movable relative to a shoulder in the outer tube. A guide tube is mounted to the valve shaft and has a guide portion protruding therefrom which is guided in guide groove in the outer tube. An adjustment tube is threadedly mounted to the first outer threads on the valve shaft. When rotating the adjustment tube, the valve shaft is axially movable in the outer tube to control the gap between the first seal and the shoulder in the outer tube. The gap is changeable and communicates with the radial hole and the passage.
Abstract: A heat dissipating device for bicycle braking systems includes a first board and a second board which is connected to the first board to form a room defined therebetween so that cooling liquid flows within the room. The first board includes a first recess and a second recess defined in an inside thereof which faces the second board. The first recess communicates with the second recess. A flanged portion is formed along four sides of the first board. The second board has a grooved portion formed on each of four sides thereof. The flanged portion is engaged with the grooved portions to connect the first and second boards together.