Patents Assigned to The Regents of the Univerisity of California
  • Patent number: 7994783
    Abstract: An integral microfluidic device includes an alkali vapor cell and microfluidic channel, which can be used to detect magnetism for nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI). Small magnetic fields in the vicinity of the vapor cell can be measured by optically polarizing and probing the spin precession in the small magnetic field. This can then be used to detect the magnetic field of in encoded analyte in the adjacent microfluidic channel. The magnetism in the microfluidic channel can be modulated by applying an appropriate series of radio or audio frequency pulses upstream from the microfluidic chip (the remote detection modality) to yield a sensitive means of detecting NMR and MRI.
    Type: Grant
    Filed: February 6, 2009
    Date of Patent: August 9, 2011
    Assignee: The Regents of the Univerisity of California
    Inventors: Micah P. Ledbetter, Igor M. Savukov, Dmitry Budker, Vishal K. Shah, Svenja Knappe, John Kitching, David J. Michalak, Shoujun Xu, Alexander Pines
  • Patent number: 7614032
    Abstract: A method for performing a mask design layout resolution enhancement includes determining a level of correction for the design layout for a predetermined parametric yield with a minimum total correction cost. The design layout is corrected at the determined level of correction based on a correction algorithm if the correction is required. In this manner, only those printed features on the design layout that are critical for obtaining the desired performance yield are corrected, thereby reducing the total cost of correction of the design layout.
    Type: Grant
    Filed: December 11, 2006
    Date of Patent: November 3, 2009
    Assignees: The Regents of the Univerisity of California, The Regents of the University of Michigan
    Inventors: Andrew B. Kahng, Puneet Gupta, Dennis Sylvester, Jie Yang
  • Patent number: 6369243
    Abstract: A method is provided for catalytically transforming a functional group within a first reactant by reaction with a second reactant in the presence of a nonmetallic, organic catalyst composition composed of a heteroatom-containing activator and an acid, or a salt of a heteroatom-containing activator and an acid. Exemplary first reactants are &agr;,&bgr;-unsaturated carbonyl compounds such as &agr;,&bgr;-unsaturated ketones and &agr;,&bgr;-unsaturated aldehydes. The heteroatom of the activator is a Group 15 or Group 16 element such as nitrogen, oxygen, sulfur or phosphorus, and exemplary heteroatom-containing activators are amines. Chiral heteroatom-containing activators can be used to catalyze enantioselective reactions, such that a chiral product is obtained from a chiral or achiral starting material in enantiomerically pure form.
    Type: Grant
    Filed: January 18, 2000
    Date of Patent: April 9, 2002
    Assignee: The Regents of the Univerisity of California
    Inventors: David W. C. MacMillan, Kateri A. Ahrendt
  • Patent number: 5704993
    Abstract: Electrical conductors and methods of producing them, where the conductors possess both high strength and high conductivity. Conductors are comprised of carbon steel and a material chosen from a group consisting of copper, nickel, silver, and gold. Diffusion barriers are placed between these two materials. The components of a conductor are assembled and then the assembly is subjected to heat treating and mechanical deformation steps.
    Type: Grant
    Filed: November 30, 1995
    Date of Patent: January 6, 1998
    Assignee: The Regents of the Univerisity of California, Office of Technology Transfer
    Inventors: Ruoyi Zhou, James L. Smith, John David Embury