Abstract: A method and apparatus using IDS™ technology to calculate new agent doses in a multi-agent therapy. The overall proportion of each agent is determined by the amount of agent as it relates to the dosing range. The overall proportion as well as the intrinsic potency of the agent is used to determine the total proportional effect which each agent has on the surrogate marker. This parameter is then inserted into the four-parameter equation for calculating dose by adjusting the proportional change in marker that is attributed to the activity of the agent.
Abstract: A method and system for use in treating a patient receiving any drug to optimize therapy and to prevent an adverse drug response. This system employs surrogate markers or indicators, including blood levels of drug, to determine the next required dose for a patient. Virtually any indicator can be used as the surrogate marker. Surrogate markers could include any measure of the effectiveness of a drug's action. Given the effectiveness of the drug's action, relative to the surrogate markers, a change in drug dose is calculated by the system which uses a stochastic loop mechanism. Conversely, by employing this system, one could determine the expected result of a drug dose change based on the surrogate markers.
Abstract: A method and system for use in treating a patient receiving any drug to optimize therapy and to prevent an adverse drug response. This system employs surrogate markers or indicators, including blood levels of drug, to determine the next required dose for a patient. Before surrogate markers are employed as a percent change in status, virtually any indicator can be used. Surrogate markers could include any measure the effectiveness of a drug's action. Given the effectiveness of the drug's action, relative to the surrogate markers, a change in drug dose is calculated by the system. Conversely, by employing this system, one could determine the expected result of a drug dose change on the surrogate markers.