Patents Assigned to The Spectranetics Corporation
  • Publication number: 20140276690
    Abstract: A system can include a microprocessor executable controller configured, based on one or more of total fiber active area of a laser catheter, imaging information regarding the target and/or non-target endovascular structure(s), target endovascular structure characterization information, current location and/or orientation of a distal tip of the laser catheter, and area of contact of the distal tip with the target and/or non-target endovascular structure to select at least one of a fiber active area for each optical channel, a number of optical channels, a configuration of fibers in an optical channel, an optical channel to be irradiated, and an ordering of optical channel irradiation.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Applicant: The Spectranetics Corporation
    Inventor: Kenneth P. Grace
  • Publication number: 20140277003
    Abstract: This disclosure discusses various methods and devices for capturing plaque that is to be removed from a blood vessel after the plaque has been separated from the blood vessel or remaining plaque.
    Type: Application
    Filed: March 13, 2013
    Publication date: September 18, 2014
    Applicant: The Spectranetics Corporation
    Inventor: Brandon Thomas Hendrick
  • Publication number: 20140275982
    Abstract: An endovascular device monitoring system is provided that determines, based on movement of the endovascular device past a selected reference location, at least one of a movement rate of a endovascular device and position of a distal end of a endovascular device in a body of a patient.
    Type: Application
    Filed: March 13, 2013
    Publication date: September 18, 2014
    Applicant: The Spectranetics Corporation
    Inventors: Brandon Thomas Hendrick, Blaine Andrew Schneider
  • Publication number: 20140276683
    Abstract: A system and devices for ablation and removal of occlusions from blood vessels is provided. Laser cutting systems and mechanical cutting systems are provided in catheter devices, the cutting systems operable to ablate, cut, dislodge, and otherwise remove occlusions within a blood vessel that may limit or prevent proper circulation. Catheter systems comprise distal end features adapted to cut and remove at least portions of an occlusion that generally correspond to dimensions of an inner lumen of a catheter.
    Type: Application
    Filed: March 13, 2013
    Publication date: September 18, 2014
    Applicant: The Spectranetics Corporation
    Inventors: Brandon Thomas Hendrick, Kenneth P. Grace
  • Publication number: 20140276920
    Abstract: A system for ablation and removal of occlusions from blood vessels is provided. Laser cutting systems and mechanical cutting systems are provided in catheter devices, the cutting systems operable to ablate, cut, dislodge, and otherwise remove occlusions within a blood vessel that may limit or prevent proper circulation. Pulsed aspiration systems are further provided, the pulsed aspiration systems operable to remove ablated, cut, or dislodged material without excessive or unnecessary removal of blood and fluid.
    Type: Application
    Filed: March 13, 2013
    Publication date: September 18, 2014
    Applicant: The Spectranetics Corporation
    Inventors: Brandon Thomas Hendrick, Kenneth P. Grace
  • Publication number: 20140277321
    Abstract: A system is provided to determine whether an insulating layer of an implanted lead is damaged.
    Type: Application
    Filed: March 13, 2013
    Publication date: September 18, 2014
    Applicant: The Spectranetics Corporation
    Inventor: Kenneth P. Grace
  • Publication number: 20140194861
    Abstract: In some embodiments, without limitation, the invention comprises a catheter having an elongated housing with a channel disposed therein. A laser delivery member is movable and at least partially disposed within the channel. A ramp is disposed within the housing at an angle to its central axis and proximate to its distal end. The ramp is adapted to move the distal end of the laser delivery member outwardly from the central axis of the housing. A guidewire biases the distal end of the laser delivery member generally inwardly toward the central axis of the housing. In some embodiments, without limitation, the offset of the central axis of the tip of the laser delivery member from the central axis of the housing is determined by adjusting the extent to which the laser delivery member travels on the ramp, and disposition of the laser delivery member on the guidewire maintains the offset tip substantially parallel to the central axis of the housing.
    Type: Application
    Filed: January 10, 2014
    Publication date: July 10, 2014
    Applicant: The Spectranetics Corporation
    Inventors: Jacob Keeler, Melissa Brookshier
  • Patent number: 8758333
    Abstract: Embodiments of the present invention comprise a fiber optic guidewire having a hypotube with a plurality of openings that provide variable stiffness and tracking characteristics between at least one proximal segment and one distal segment of the guidewire. In some embodiments, the guidewire further comprises a mandrel disposed within the hypotube, the mandrel cooperating with the optical fibers to permit the distal end of the hypotube to be shaped as desired by a user. Methods of manufacturing and using the guidewire are also disclosed.
    Type: Grant
    Filed: April 4, 2007
    Date of Patent: June 24, 2014
    Assignee: The Spectranetics Corporation
    Inventor: Kenneth D. Harlan
  • Patent number: 8702773
    Abstract: Various embodiments of an eccentric balloon catheter are disclosed. In some embodiments, an eccentric balloon catheter includes an eccentrically positioned guidewire tube, with an interior lumen, that extends at least a portion of the length of the catheter body. Optical fibers may extend the length of the catheter body and may also be eccentrically positioned within the catheter body. An inflatable balloon may be positioned within a window within the catheter body near the distal end of the catheter. When inflated, the balloon and catheter may slide relative to one another. When used within a vessel, an inflated balloon may press against a vessel wall and bias the catheter toward an opposite vessel wall.
    Type: Grant
    Filed: December 17, 2008
    Date of Patent: April 22, 2014
    Assignee: The Spectranetics Corporation
    Inventor: Jacob Keeler
  • Publication number: 20140081289
    Abstract: Methods and systems for removing an object, such as a lead, from formed tissue are provided. Specifically, a lead removal sleeve is configured to engage patient formed tissue at a dilation engagement point. The lead removal sleeve is configured to dilate the formed tissue around a lead, while providing an inner lumen with clearance for the lead to move within the sleeve. It is an object of the lead removal sleeve to support the formed tissue, and even forces of the formed tissue, with a structure of the sleeve as the lead is removed from a patient. The methods and systems are well suited for use in cardiac pacing or defibrillator lead explant procedures.
    Type: Application
    Filed: March 14, 2013
    Publication date: March 20, 2014
    Applicant: The Spectranetics Corporation
    Inventor: Richard Lofton FISER
  • Publication number: 20140081303
    Abstract: Methods and systems for separating an object, such as a lead, from formed tissue are provided. Specifically, a tissue slitting device is configured to engage patient formed tissue at a slitting engagement point. While the object is subjected to a first traction force, the tissue slitting device is caused to move further into the engaged tissue and slit the tissue past the point of engagement. The slitting device causes the tissue to separate along an axial direction of the length of the formed tissue and releases at least some of the force containing the object. The methods and systems are well suited for use in cardiac pacing or defibrillator lead explant procedures.
    Type: Application
    Filed: March 14, 2013
    Publication date: March 20, 2014
    Applicant: The Spectranetics Corporation
    Inventors: Wade A. BOWE, George Woodrow Burton, Paul Joseph Dalby, Richard Lofton Fiser, Ryan Michael Sotak
  • Publication number: 20140081304
    Abstract: Methods and systems for separating an object, such as a lead, from formed tissue are provided. Specifically, a tissue slitting device is configured to engage patient formed tissue at a slitting engagement point. While the object is subjected to a first traction force, the tissue slitting device is caused to move further into the engaged tissue and slit the tissue past the point of engagement. The slitting device causes the tissue to separate along an axial direction of the length of the formed tissue and releases at least some of the force containing the object. The methods and systems are well suited for use in cardiac pacing or defibrillator lead explant procedures.
    Type: Application
    Filed: March 14, 2013
    Publication date: March 20, 2014
    Applicant: The Spectranetics Corporation
    Inventors: Wade A. Bowe, George Woodrow Burton, Paul Joseph Dalby, Richard Lofton Fiser, Ryan Michael Sotak, Matthew Allan James
  • Publication number: 20140081306
    Abstract: Methods and systems for separating an object, such as a lead, from formed tissue are provided. Specifically, a tissue slitting device is configured to engage patient formed tissue at a slitting engagement point. While the object is subjected to a first traction force, the tissue slitting device is caused to move further into the engaged tissue and slit the tissue past the point of engagement. The slitting device causes the tissue to separate along an axial direction of the length of the formed tissue and releases at least some of the force containing the object. The methods and systems are well suited for use in cardiac pacing or defibrillator lead explant procedures.
    Type: Application
    Filed: March 14, 2013
    Publication date: March 20, 2014
    Applicant: The Spectranetics Corporation
    Inventors: Wade A. BOWE, George Woodrow Burton, Paul Joseph Dalby, Richard Lofton Fiser, Ryan Michael Sotak
  • Publication number: 20140081367
    Abstract: Methods, devices and systems for separating an implanted object, such as a lead attached to a cardiac conduction device, from formed tissue within a blood vessel are provided. The methods, devices and systems for separating a lead from the tissue relate to dilating the tissue surrounding the lead from underneath the tissue and/or between the lead and the tissue.
    Type: Application
    Filed: March 14, 2013
    Publication date: March 20, 2014
    Applicant: The Spectranetics Corporation
    Inventors: Brandon Thomas HENDRICK, Michael Craig Anderson
  • Publication number: 20140081252
    Abstract: Methods and systems for separating an object, such as a lead, from formed tissue are provided. Specifically, a tissue slitting device is configured to engage patient formed tissue at a slitting engagement point. While the object is subjected to a first traction force, the tissue slitting device is caused to move further into the engaged tissue and slit the tissue past the point of engagement. The slitting device causes the tissue to separate along an axial direction of the length of the formed tissue and releases at least some of the force containing the object. The methods and systems are well suited for use in cardiac pacing or defibrillator lead explant procedures.
    Type: Application
    Filed: March 14, 2013
    Publication date: March 20, 2014
    Applicant: The Spectranetics Corporation
    Inventors: Wade A. BOWE, George Woodrow Burton, Paul Joseph Dalby, Richard Lofton Fiser, Ryan Michael Sotak, Blaine Andrew Schneider
  • Publication number: 20140025086
    Abstract: Device and method for capturing guidewires inside blood vessels. The disclosed device enables retrieval of guidewires that need to be pulled from the body at a different location than the guidewire entering location, such as guidewires that have entered in a retrograde direction.
    Type: Application
    Filed: December 12, 2011
    Publication date: January 23, 2014
    Applicant: The Spectranetics Corporation
    Inventors: Dan Rottenberg, Ron Sacher
  • Patent number: 8628519
    Abstract: Embodiments of a balloon biasing laser catheter are provided. In some embodiments, the laser catheter may include a distal tip that extends from the distal end of the catheter from a point near the light guide aperture. The distal tip may be disposed at the periphery of the catheter. In some embodiments, a balloon may be disposed between the light guide aperture and the distal tip, such that the a light guide extending from the aperture may be disposed proximate with the distal tip having the balloon in between. A retaining wire may be coupled with the distal tip and slidably coupled with the light guide. The retaining wire may keep the light guide biased relatively parallel with the distal tip and/or the catheter body when the balloon is inflated. The light guide may include a guidewire lumen the extends to the distal end of the distal tip.
    Type: Grant
    Filed: December 17, 2008
    Date of Patent: January 14, 2014
    Assignee: The Spectranetics Corporation
    Inventors: Kevin D. Taylor, Wade Bowe
  • Publication number: 20130338500
    Abstract: Embodiments of the present invention include a laser catheter that includes a catheter body, a light guide, and a distal tip that extends beyond the exit aperture of the light guide. In some embodiments, an imaging device is disposed on the distal tip such that the imaging device is distal relative to the exit aperture of the light guide. In some embodiments, the imaging device can be gated to record images during and/or slightly beyond periods when the laser catheter is not activated.
    Type: Application
    Filed: August 16, 2013
    Publication date: December 19, 2013
    Applicant: The Spectranetics Corporation
    Inventors: Kevin D. Taylor, Ken Harlan, James Nye, Robert Splinter, Jacob Keeler, Chris J. Hebert, Wade Bowe
  • Patent number: 8545488
    Abstract: Embodiments of the present invention include a laser catheter that includes a catheter body, a light guide, and a distal tip that extends beyond the exit aperture of the light guide. In some embodiments, an imaging device is disposed on the distal tip such that the imaging device is distal relative to the exit aperture of the light guide. In some embodiments, the imaging device can be gated to record images during and/or slightly beyond periods when the laser catheter is not activated.
    Type: Grant
    Filed: December 30, 2009
    Date of Patent: October 1, 2013
    Assignee: The Spectranetics Corporation
    Inventors: Kevin D. Taylor, Ken Harlan, James Nye, Robert Splinter, Jacob Keeler, Chris J. Hebert, Wade A. Bowe
  • Publication number: 20130253486
    Abstract: Expandable laser catheters for utilizing laser energy to remove obstructions from body passages are described. In one embodiment, the laser catheter includes a shaftway having a distal end including a flexible portion configured in a series of radial folds. Multiple optical fibers, configured to transmit laser energy, extend along the shaftway and are attached to the flexible portion. An inflatable, ring-shaped balloon is attached to the catheter within the flexible portion. In use, the catheter is inserted into a body passage such as an artery, and advanced until the distal end is adjacent to an obstruction. The balloon is inflated to expand the flexible portion and to bring the optical fibers nearer the inner wall of the body passage. Laser energy is directed by the optical fibers toward targeted regions of the obstruction. As the catheter is advanced and the process repeated, a core is formed from the obstruction and contained within the flexible portion.
    Type: Application
    Filed: May 20, 2013
    Publication date: September 26, 2013
    Applicant: THE SPECTRANETICS CORPORATION
    Inventors: Thomas R. Winston, John M. Neet