Patents Assigned to The Texas A&M University System
  • Publication number: 20250115482
    Abstract: In an embodiment, the present disclosure pertains to a method of deposition of nanostructures with engineered patterns. In an additional embodiment, the present disclosure pertains to a method of preparing colloidal suspensions of hybrid nanoparticle systems (HNMS). In a further embodiment, the present disclosure pertains to a method of making a cellulose nanocrystal (CNC)-bonded carbon nanotube carbon fiber reinforced polymer (CNT-CFRP) hybrid composite. In another embodiment, the present disclosure pertains to a method of making a cellulose nanocrystal (CNC)-bonded graphene nanoplatelets (GNP) carbon fiber reinforced polymer (GNP-CFRP) hybrid composite. In a further embodiment, the present disclosure pertains to a method of making a hybrid cellulose nanocrystal (CNC)-graphene nanoplatelet(boron nitride nanobarb) (GNP-(BNNB))-carbon fiber (CF)Zpolyether ether ketone (PEEK) using spray-coating.
    Type: Application
    Filed: January 20, 2023
    Publication date: April 10, 2025
    Applicant: The Texas A&M University System
    Inventors: Dorrin Jarrahabshi, Amir Asadi, Shadi Shariatinia
  • Patent number: 12269586
    Abstract: A hover-capable aircraft includes a body including a tubular strut, a first rotor assembly rotatably coupled to the body and positioned about the strut, wherein the first rotor assembly includes a first plurality of circumferentially-spaced blades, a first actuation assembly including a first plurality of electronically controlled actuators coupled to a first swashplate and configured to control the movement of the first swashplate relative to the body, and a control system coupled to the body and configured to control the first plurality of actuators, wherein the control system includes a cable extending through a passage formed in the tubular strut and in signal communication with the first plurality of actuators.
    Type: Grant
    Filed: June 14, 2019
    Date of Patent: April 8, 2025
    Assignee: The Texas A&M University System
    Inventors: Moble Benedict, David Coleman, Atanu Halder, Bochan Lee, Andrew Riha, Farid Saemi, Carl Runco, Vishaal Subramanian, Eric Greenwood, Vinod Lakshminarayan
  • Patent number: 12268393
    Abstract: A system for treating an aneurysm in a blood vessel or vein, wherein the aneurysm has a dome, an interior, and a neck. The system includes a shape memory polymer foam in the interior of the aneurysm between the dome and the neck. The shape memory polymer foam has pores that include a first multiplicity of pores having a first pore size and a second multiplicity of pores having a second pore size. The second pore size is larger than said first pore size. The first multiplicity of pores are located in the neck of the aneurysm. The second multiplicity of pores are located in the dome of the aneurysm.
    Type: Grant
    Filed: October 7, 2021
    Date of Patent: April 8, 2025
    Assignees: Lawrence Livermore National Security, Inc., The Texas A&M University System, Shape Memory Medical, Inc.
    Inventors: Jason M. Ortega, William J. Benett, Ward Small, Thomas S. Wilson, Duncan J. Maitland, Jonathan Hartman
  • Patent number: 12273016
    Abstract: An electric machine includes a stator having a plurality of stator teeth. Each stator tooth of the plurality of stator teeth includes a winding disposed there around. Each stator tooth of the plurality of stator teeth is shaped to receive a plurality of microchannels. The microchannels contain a circulating heat-transfer fluid; Each stator tooth of the plurality of stator teeth is thermally exposed to the heat-transfer fluid via the plurality of microchannels so as to effectuate heat removal from each stator tooth of the plurality of stator teeth.
    Type: Grant
    Filed: May 13, 2021
    Date of Patent: April 8, 2025
    Assignee: The Texas A&M University System
    Inventors: Hamid A. Toliyat, Matthew C. Gardner, Patrick J. Shamberger, Moble Benedict, Jaime C. Grunlan, Dion S. Antao, Bryan P. Rasmussen, Jonathan R. Felts, Prasad N. Enjeti
  • Patent number: 12270170
    Abstract: A surge gate for blocking a surge of water includes a sleeve disposed below a waterline of the water, wherein the sleeve has an open upper end and a closed lower end, and a piston slidably disposed in the sleeve, wherein the piston is configured to rise vertically within the sleeve along a vertical axis between a first position with an upper end of the piston positioned below the waterline, and a second position with the upper end of the piston positioned above the waterline.
    Type: Grant
    Filed: August 20, 2021
    Date of Patent: April 8, 2025
    Assignee: Texas A&M University System
    Inventor: John Albert Sweetman
  • Patent number: 12264150
    Abstract: NR4A1 ligands, pharmaceutical compositions including the NR4A1 ligands, and related methods of use are described. Methods of treating a disease or condition in an individual treatable by modulation of NR4A1 activity, comprising administering to the individual a therapeutically effective amount of a compound or a pharmaceutical composition described herein.
    Type: Grant
    Filed: October 26, 2021
    Date of Patent: April 1, 2025
    Assignee: The Texas A&M University System
    Inventor: Stephen Safe
  • Patent number: 12266501
    Abstract: A nanoscale positioning system for positioning a positionable component includes a motion platform including a first end, a second end, a shuttle positioned between the first end and the second end and configured to support the positionable component, a flexure member, and a fluid passage extending through the flexure member from the first end to the second end of the motion platform, and a pressure controller coupled to the motion platform and fluidically connected to the fluid passage, wherein the pressure controller is configured to selectably provide a fluid pressure in the fluid passage to flex the flexure member whereby the shuttle is displaced along a motion axis of the motion platform.
    Type: Grant
    Filed: November 27, 2020
    Date of Patent: April 1, 2025
    Assignee: The Texas A&M University System
    Inventor: ChaBum Lee
  • Publication number: 20250093207
    Abstract: A passive infrared (PIR) sensor system, includes a PIR sensor configured to produce an output signal in response to receiving infrared (IR) radiation, an electronic shutter positionable in a field of view (FOV) of the PIR sensor, wherein the electronic shutter includes a liquid crystal (LC) material, wherein the electronic shutter includes a first state providing a first transmissivity of IR radiation through the electronic shutter and a second state providing a second transmissivity of IR radiation through the electronic shutter that is less than the first transmissivity, and a shutter actuator configured to apply an actuation signal to the electronic shutter to actuate the electronic shutter between the first state and the second state.
    Type: Application
    Filed: December 5, 2024
    Publication date: March 20, 2025
    Applicant: The Texas A&M University System
    Inventors: Ya Wang, Libo Wu, Zhangjie Chen
  • Patent number: 12251500
    Abstract: An embodiment includes a process for treating an abdominal aortic aneurysm (AAA) endoleak with a shape memory polymer (SMP) foam device. First, a bifurcated stent graft is placed within the aneurysm while a micro guidewire is positioned within the aneurysm for future catheter access. Second, after placing the iliac graft extension, a catheter is introduced over wire to deliver embolic foams. Third, embolic foams expand and conform to the aneurysm wall. Fourth, embolic foams create a stable thrombus to prevent endoleak formation by isolating peripheral vessels from the aneurysm volume.
    Type: Grant
    Filed: December 8, 2023
    Date of Patent: March 18, 2025
    Assignees: THE TEXAS A&M UNIVERSITY SYSTEM, SHAPE MEMORY MEDICAL, INC
    Inventors: Duncan J. Maitland, Todd L. Landsman, John Horn, Landon Nash, Chung Yeh
  • Publication number: 20250076182
    Abstract: A corrosion monitoring system includes a processor, and a memory in communication with the processor and having a control module, a potentiostat, coupled to a clamp with a first plate and a second plate. The control module includes instructions that, when executed by the processor, cause the processor to control the potentiostat to apply a voltage to the first plate and the second plate during an EIS test of a coating on a metal substrate disposed between the first plate and the second plate. The corrosion monitoring system also monitors or detects a change in at least one of a phase angle and an impedance of the applied voltage, and identifies a change in corrosion activation at the substrate for any coating system based, at least in part, on the change in the at least one of the phase angle and the impedance.
    Type: Application
    Filed: August 6, 2024
    Publication date: March 6, 2025
    Applicants: Toyota Motor Engineering & Manufacturing North America, Inc., Toyota Jidosha Kabushiki Kaisha, The Texas A&M University System
    Inventors: Victor Ponce Valderrama, Shaik Merkatur Hakim Marjuban, Homero Castaneda-Lopez, Heather M. Eich, Walter D. Tarr
  • Patent number: 12239304
    Abstract: A device for a tissue channel includes a device frame, a shape memory polymer foam segment coupled to the device frame, and an attachment structure coupled to the device frame. The device frame includes a proximal structure, a distal structure, and an intermediate structure coupled to the proximal structure and the distal structure. The proximal structure is configured to collapse to fit into a delivery structure and expand to block migration of the proximal structure. The distal structure is configured to collapse to fit into the delivery structure and expand to block migration of the distal structure. The intermediate structure is configured to fit in the tissue channel upon device deployment. The shape memory polymer foam segment is configured to compress to fit into the delivery structure and occlude the channel. The attachment structure is configured to attach and detach the device from a delivery guide.
    Type: Grant
    Filed: June 10, 2022
    Date of Patent: March 4, 2025
    Assignee: THE TEXAS A&M UNIVERSITY SYSTEM
    Inventors: Mark A. Wierzbicki, Duncan Maitland, Matthew W. Miller, Andrea D. Muschenborn, Landon Nash, Jason M. Szafron, Todd Landsman
  • Patent number: 12245506
    Abstract: A hydro-electrochemical power generator includes an interlayer having a first end and a second end opposite the first end, a first electrode in contact with the first end of the interlayer, wherein the first electrode includes a first material that is a corrodible metallic material, a second electrode in contact with the second end of the interlayer, wherein the second electrode includes a second material that is a corrodible metallic material, and at least one heat source coupled to one of the first electrode and the second electrode and configured to apply a temperature gradient across the first end and the second end of the interlayer, and wherein the first electrode and the second electrode are configured to output a non-zero electrical voltage in response to the application of the temperature gradient.
    Type: Grant
    Filed: December 14, 2021
    Date of Patent: March 4, 2025
    Assignee: The Texas A&M University System
    Inventors: Choongho Yu, Yufan Zhang
  • Patent number: 12239765
    Abstract: Amorphous SiOx (SiO2), SiONx, silicon nitride (Si3N4), surface treatments are provided, on both metal (titanium) and non-metal surfaces. Amorphous silicon-film surface treatments are shown to enhance osteoblast and osteoblast progenitor cell bioactivity, including biomineral formation and osteogenic gene panel expression, as well as enhanced surface hydroxyapatite (HA) formation. A mineralized tissue interface is provided using the amorphous silicon-based surface treatments in the presence of osteoblasts, and provides improved bone cell generation/repair and improved interface for secure attachment/bonding to bone. Methods for providing PEVCD-based silicon overlays onto surfaces are provided. Methods of increasing antioxidant enzyme (e.g., superoxide dismutase) expression at a treated surface for enhanced healing are also provided.
    Type: Grant
    Filed: November 12, 2020
    Date of Patent: March 4, 2025
    Assignees: THE TEXAS A&M UNIVERSITY SYSTEM, UT- BATTELLE, LLC, BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: Venu Varanasi, Pranesh Aswath, Megen Maginot, Nickolay V. Lavrik
  • Publication number: 20250060214
    Abstract: The present disclosure pertains to a circulating tumor cell (CTC) microfluidic platform that is used for the detection of CTCs, enumeration of CTCs in a sample, characterization of biophysical properties, CTC cell size, CTC cell membrane deformability, stresses on CTC cell membranes, adhesion stress on CTC cells, normal stress of CTC cells, or combinations thereof.
    Type: Application
    Filed: November 1, 2024
    Publication date: February 20, 2025
    Applicant: The Texas A&M University System
    Inventors: Jian Sheng, Maryam Jalali-Mousavi
  • Patent number: 12226031
    Abstract: A stool includes a base with a post extending therefrom. A seat is connected to a distal end of the post. In some configurations, the seat may be configured to act as a deployable back rest. A deployable anti-fatigue mat is connected to the base. In some configurations, the deployable anti-fatigue mat is attached to the base via a hinged connection. In some configurations, the deployable anti-fatigue mat is attached to the base with a sliding connection that allows the deployable anti-fatigue mat to slide out from the base.
    Type: Grant
    Filed: January 20, 2023
    Date of Patent: February 18, 2025
    Assignee: The Texas A&M University System
    Inventors: Mark E. Benden, Jackson C. Jarman
  • Patent number: 12227703
    Abstract: An apparatus for converting heavy hydrocarbons to light hydrocarbons includes an inlet capable of supplying a pre-foaming mixture comprising a hydrocarbon to be processed and a processing gas, wherein the processing gas is dissolved in the hydrocarbon to be processed; a foam generator configured to receive the pre-foaming mixture at a first pressure, compress the pre-foaming mixture to a second pressure that is higher than the first pressure by routing it through a nozzle; and generate a foam by allowing the pre-foaming mixture at the second pressure to expand in a chamber at a third pressure that is lower than the first or second pressures; a plasma reactor, wherein the plasma reactor is capable of receiving the foam and comprises at least one pair of spark gap electrodes capable of subjecting the foam to a plasma discharge to yield a processed mixture; and an outlet capable of receiving the processed mixture.
    Type: Grant
    Filed: March 17, 2021
    Date of Patent: February 18, 2025
    Assignee: TEXAS A&M UNIVERSITY SYSTEM
    Inventors: David Staack, Md Abdullah Hil Baky, Charles S. Martens, Howard B. Jemison
  • Patent number: 12230026
    Abstract: A method for identifying, locating, and mapping targets of interest using unmanned aerial vehicle (UAV) camera footage in GPS-denied environments. In one embodiment, the method comprises obtaining UAV visual data, passing the UAV visual data through a convolutional neural network (CNN) in order to detect targets of interest based on visual features disposed in the UAV visual data, wherein the detection by the CNN defines reference points and pixel coordinates for the UAV visual data, applying a geometric transformation to known and defined pixel coordinates to obtain real-world orthogonal positions; and projecting the detected targets of interest onto an orthogonal map based on the obtained real-world orthogonal positions, all without GPS data.
    Type: Grant
    Filed: December 6, 2020
    Date of Patent: February 18, 2025
    Assignee: The Texas A&M University System
    Inventor: Amir H. Behzadan
  • Publication number: 20250050353
    Abstract: In an embodiment, the present disclosure pertains to a droplet system, apparatus, or fluid sample testing system to accomplish high-precision and high-efficiency droplet manipulation (e.g., greater than 99% platform operation efficiency). In some embodiments, the droplet system, apparatus, or fluid sample testing system includes at least one microfluidic channel or chamber and at least one interdigitated electrode (IDE) that can create a localized electric field below and/or within at least one fluidic channel or chamber. In some embodiments, this allows size-specific and/or size-dependent droplet manipulation.
    Type: Application
    Filed: December 23, 2022
    Publication date: February 13, 2025
    Applicant: The Texas A&M University System
    Inventors: Arum Han, Can Huang, Adrian Ryan Guzman, Han Zhang, Jing Dai, Rohit Kunal Gupte
  • Patent number: 12220491
    Abstract: An embodiment includes a wound dressing comprising: a shape memory polymer (SMP) foam, including open cells, having first and second states; and a hydrogel (HG) included within the cells; wherein (a) in a first position a composite, including the SMP foam and the HG, is configured to be located proximate a hemorrhagic tissue with the SMP foam in the first state; (b) in a second position the composite is configured to be expanded to the second state against the hemorrhagic tissue when the SMP foam is plasticized at 37° C. depressing a glass transition temperature (Tg) of the SMP foam to below 25° C. Other embodiments are described herein.
    Type: Grant
    Filed: February 26, 2024
    Date of Patent: February 11, 2025
    Assignees: LAWRENCE LIVERMORE NATIONAL SECURITY, LLC, THE TEXAS A&M UNIVERSITY SYSTEM
    Inventors: Duncan J. Maitland, Todd Lawrence Landsman, Tyler Joseph Touchet, Elizabeth L. Cosgriff-Hernandez, Thomas S. Wilson
  • Patent number: 12220502
    Abstract: An embodiment includes a system comprising: a substrate of a medical device; an un-foamed polyurethane coating directly contacting the substrate and fixedly attached to the substrate; a thermoset polyurethane shape memory polymer (SMP) foam, having first and second states, which directly contacts the polyurethane coating and fixedly attaches to the polyurethane coating; wherein the polyurethane coating fixedly attaches the SMP foam to the substrate. Other embodiments are described herein.
    Type: Grant
    Filed: June 23, 2022
    Date of Patent: February 11, 2025
    Assignee: The Texas A&M University System
    Inventors: Rachael Muschalek, Keith Hearon, Landon D. Nash, Duncan J. Maitland