Patents Assigned to The United States of America as represented by the Administrator of National Aeronautics and Space Administration
  • Patent number: 9599995
    Abstract: A kite system includes a kite and a ground station. The ground station includes a sensor that can be utilized to determine an angular position and velocity of the kite relative to the ground station. A controller utilizes a fuzzy logic control system to autonomously fly the kite. The system may include a ground station having powered winding units that generate power as the lines to the kite are unreeled. The control system may be configured to fly the kite in a crosswind trajectory to increase line tension for power generation. The sensors for determining the position of the kite are preferably ground-based.
    Type: Grant
    Filed: December 4, 2014
    Date of Patent: March 21, 2017
    Assignee: THE UNITED STATES OF AMERICA AS REPRESENTED BY THE ADMINISTRATOR OF THE NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
    Inventors: David D. North, Mark J. Aull
  • Patent number: 9599497
    Abstract: The present invention is a system and method of visualizing fluid flow around an object, such as an aircraft or wind turbine, by aligning the object between an imaging system and a celestial object having a speckled background, taking images, and comparing those images to obtain fluid flow visualization.
    Type: Grant
    Filed: July 29, 2015
    Date of Patent: March 21, 2017
    Assignee: The United States of America as Represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Edward A Haering, Jr., Michael A Hill
  • Patent number: 9601391
    Abstract: A method and system are provided for determining mechanical stress experienced by a film during fabrication thereof on a substrate positioned in a vacuum deposition chamber. The substrate's first surface is disposed to have the film deposited thereon and the substrate's opposing second surface is a specular reflective surface. A portion of the substrate is supported. An optical displacement sensor is positioned in the vacuum deposition chamber in a spaced-apart relationship with respect to a portion of the substrate's second surface. During film deposition on the substrate's first surface, displacement of the portion of the substrate's second surface is measured using the optical displacement sensor. The measured displacement is indicative of a radius of curvature of the substrate, and the radius of curvature is indicative of mechanical stress being experienced by the film.
    Type: Grant
    Filed: March 12, 2015
    Date of Patent: March 21, 2017
    Assignee: The United States of America as Represented by the Administrator of the National Aeronautics and Space Administration
    Inventor: David M. Broadway
  • Patent number: 9592923
    Abstract: A low-density article comprising a flexible substrate and a pyrolizable material impregnated therein, methods of preparing, and devices using the article are disclosed. The pyrolizable material pyrolizes above 350 C and does not flow at temperatures below the pyrolysis temperature. The low-density article remains flexible after impregnation and continues to remain flexible when the pyrolizable material is fully pyrolized.
    Type: Grant
    Filed: October 23, 2012
    Date of Patent: March 14, 2017
    Assignee: The United States of America as Represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Margaret M. Stackpoole, Ehson M. Ghandehari, Jeremy J. Thornton, Melmoth Alan Covington
  • Patent number: 9591417
    Abstract: The present invention is an extremely low frequency (ELF) microphone and acoustic measurement system capable of infrasound detection in a portable and easily deployable form factor. In one embodiment of the invention, an extremely low frequency electret microphone comprises a membrane, a backplate, and a backchamber. The backchamber is sealed to allow substantially no air exchange between the backchamber and outside the microphone. Compliance of the membrane may be less than ambient air compliance. The backplate may define a plurality of holes and a slot may be defined between an outer diameter of the backplate and an inner wall of the microphone. The locations and sizes of the holes, the size of the slot, and the volume of the backchamber may be selected such that membrane motion is substantially critically damped.
    Type: Grant
    Filed: February 20, 2013
    Date of Patent: March 7, 2017
    Assignee: THE UNITED STATES OF AMERICA AS REPRESENTED BY THE ADMINISTRATOR OF THE NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
    Inventors: Qamar A. Shams, Allan J. Zuckerwar
  • Patent number: 9587089
    Abstract: Conventional toughening agents are typically rubbery materials or small molecular weight molecules, which mostly sacrifice the intrinsic properties of a matrix such as modulus, strength, and thermal stability as side effects. On the other hand, high modulus inclusions tend to reinforce elastic modulus very efficiently, but not the strength very well. For example, mechanical reinforcement with inorganic inclusions often degrades the composite toughness, encountering a frequent catastrophic brittle failure triggered by minute chips and cracks. Thus, toughening generally conflicts with mechanical reinforcement. Carbon nanotubes have been used as efficient reinforcing agents in various applications due to their combination of extraordinary mechanical, electrical, and thermal properties.
    Type: Grant
    Filed: July 6, 2015
    Date of Patent: March 7, 2017
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Cheol Park, Dennis C. Working, Emilie J. Siochi, Joycelyn S. Harrison
  • Patent number: 9583018
    Abstract: A RiG may simulate visual conditions of a real world environment, and generate the necessary amount of pixels in a visual simulation at rates up to 120 frames per second. RiG may also include a database generation system capable of producing visual databases suitable to drive the visual fidelity required by the RiG.
    Type: Grant
    Filed: June 12, 2014
    Date of Patent: February 28, 2017
    Assignee: The United States of America as Represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: John L. Archdeacon, Nelson H. Iwai, Kenji H. Kato, Barbara T. Sweet
  • Patent number: 9579867
    Abstract: Disclosed is a single wall carbon nanotube (SWCNT) film electrode (FE), all-organic electroactive device systems fabricated with the SWNT-FE, and methods for making same. The SWCNT can be replaced by other types of nanotubes. The SWCNT film can be obtained by filtering SWCNT solution onto the surface of an anodized alumina membrane. A freestanding flexible SWCNT film can be collected by breaking up this brittle membrane. The conductivity of this SWCNT film can advantageously be higher than 280 S/cm. An electroactive polymer (EAP) actuator layered with the SWNT-FE shows a higher electric field-induced strain than an EAP layered with metal electrodes because the flexible SWNT-FE relieves the restraint of the displacement of the polymeric active layer as compared to the metal electrode. In addition, if thin enough, the SWNT-FE is transparent in the visible light range, thus making it suitable for use in actuators used in optical devices.
    Type: Grant
    Filed: July 10, 2013
    Date of Patent: February 28, 2017
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Jin Ho Kang, Cheol Park, Joycelyn S. Harrison
  • Patent number: 9577177
    Abstract: A method of fabricating circuitry in a wafer includes depositing a superconducting metal on a silicon on insulator wafer having a handle wafer, coating the wafer with a sacrificial layer and bonding the wafer to a thermally oxide silicon wafer with a first epoxy. The method includes flipping the wafer, thinning the flipped wafer by removing a handle wafer, etching a buried oxide layer, depositing a superconducting layer, bonding the wafer to a thermally oxidized silicon wafer having a handle wafer using an epoxy, flipping the wafer again, thinning the flipped wafer, etching a buried oxide layer from the wafer and etching the sacrificial layer from the wafer. The result is a wafer having superconductive circuitry on both sides of an ultra-thin silicon layer.
    Type: Grant
    Filed: May 25, 2016
    Date of Patent: February 21, 2017
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Ari D. Brown, Vilem Mikula
  • Patent number: 9574080
    Abstract: Systems, methods, and articles of manufacture related to composite materials are discussed herein. These materials can be based on a mixture of diamond particles with a matrix and fibers or fabrics. The matrix can be formed into the composite material through optional pressurization and via heat treatment. These materials display exceptionally low friction coefficient and superior wear resistance in extreme environments.
    Type: Grant
    Filed: December 6, 2011
    Date of Patent: February 21, 2017
    Assignee: The United States of America as Represented by the Administrator of National Aeronautics and Space Administration
    Inventors: Kenneth Street, Oleg A Voronov, Bernard H Kear
  • Patent number: 9567225
    Abstract: Methods for forming holey carbon allotropes and graphene nanomeshes are provided by the various embodiments. The various embodiments may be applicable to a variety of carbon allotropes, such as graphene, graphene oxide, reduced graphene oxide, thermal exfoliated graphene, graphene nanoribbons, graphite, exfoliated graphite, expanded graphite, carbon nanotubes (e.g., single-walled carbon nanotubes, double-walled carbon nanotubes, few-walled carbon nanotubes, multi-walled carbon nanotubes, etc.), carbon nanofibers, carbon fibers, carbon black, amorphous carbon, fullerenes, etc. The methods may produce holey carbon allotropes without the use of solvents, catalysts, flammable gas, additional chemical agents, or electrolysis to produce the pores (e.g., holes, etc.) in the carbon allotropes. In an embodiment, a carbon allotrope may be heated at a working window temperature for a working period of time to create holes in the carbon allotrope.
    Type: Grant
    Filed: October 14, 2014
    Date of Patent: February 14, 2017
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Yi Lin, Jae-Woo Kim, John W. Connell, Michael R. Funk, Caroline J. Campbell
  • Patent number: 9555905
    Abstract: Systems, apparatuses, and methods for removal of orbital debris are provided. In one embodiment, an apparatus includes a spacecraft control unit configured to guide and navigate the apparatus to a target. The apparatus also includes a dynamic object characterization unit configured to characterize movement, and a capture feature, of the target. The apparatus further includes a capture and release unit configured to capture a target and deorbit or release the target. The collection of these apparatuses is then employed as multiple, independent and individually operated vehicles launched from a single launch vehicle for the purpose of disposing of multiple debris objects.
    Type: Grant
    Filed: September 2, 2015
    Date of Patent: January 31, 2017
    Assignees: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration, The Aerospace Corporation
    Inventors: Anthony D. Griffith, Sr., Rajiv Kohli, Susan H. Burns, Stephen J. Damico, David J. Gruber, Christopher J. Hickey, David E. Lee, Travis M. Robinson, Jason T. Smith, Peter T. Spehar, David S. Adlis, Brian M. Kent
  • Patent number: 9559529
    Abstract: Some embodiments of the present invention describe a battery including a plurality of master-less controllers. Each controller is operatively connected to a corresponding cell in a string of cells, and each controller is configured to bypass a fraction of current around the corresponding cell when the corresponding cell has a greater charge than one or more other cells in the string of cells.
    Type: Grant
    Filed: July 28, 2011
    Date of Patent: January 31, 2017
    Assignee: The United States of America as Represented by the Administrator of National Aeronautics and Space Administration
    Inventors: Robert M Button, Marcelo C Gonzalez
  • Patent number: 9559616
    Abstract: A generator for producing an electric field for with an inspection technology system is provided. The generator provides the required variable magnitude quasi-static electric fields for the “illumination” of objects, areas and volumes to be inspected by the system, and produces human-safe electric fields that are only visible to the system. The generator includes a casing, a driven, non-conducting and triboelectrically neutral rotation shaft mounted therein, an ungrounded electrostatic dipole element which works in the quasi-static range, and a non-conducting support for mounting the dipole element to the shaft. The dipole element has a wireless motor system and a charging system which are wholly contained within the dipole element and the support that uses an electrostatic approach to charge the dipole element.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: January 31, 2017
    Assignee: THE UNITED STATES OF AMERICA AS REPRESENTED BY THE ADMINISTRATOR OF THE NATIONAL AERONAUTICS AND SPACE ADMINISTRATION.
    Inventor: Edward R. Generazio
  • Patent number: 9558670
    Abstract: A dynamic constraint avoidance route system automatically analyzes routes of aircraft flying, or to be flown, in or near constraint regions and attempts to find more time and fuel efficient reroutes around current and predicted constraints. The dynamic constraint avoidance route system continuously analyzes all flight routes and provides reroute advisories that are dynamically updated in real time. The dynamic constraint avoidance route system includes a graphical user interface that allows users to visualize, evaluate, modify if necessary, and implement proposed reroutes.
    Type: Grant
    Filed: June 15, 2015
    Date of Patent: January 31, 2017
    Assignee: The United States of America as Represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Kapil S. Sheth, B. David McNally, Heinz Erzberger, Alexander R. Morando, Alexis A. Clymer, Fu-tai Shih
  • Patent number: 9557322
    Abstract: An apparatus and method that utilizes a radiation source and a simulated microgravity to provide combined stressors. The response of cells/bacteria/viruses and/or other living matter to the combined stressors can be evaluated to predict the effects of extended space missions. The apparatus and method can also be utilized to study diseases and to develop new treatments and vaccinations.
    Type: Grant
    Filed: June 26, 2014
    Date of Patent: January 31, 2017
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventor: Lisa A. Scott Carnell
  • Patent number: 9550873
    Abstract: Some implementations provide a composite material that includes a first material and a second material. In some implementations, the composite material is a metamaterial. The first material includes a chiral polymer (e.g., crystalline chiral helical polymer, poly-?-benzyl-L-glutamate (PBLG), poly-L-lactic acid (PLA), polypeptide, and/or polyacetylene). The second material is within the chiral polymer. The first material and the second material are configured to provide an effective index of refraction value for the composite material of 1 or less. In some implementations, the effective index of refraction value for the composite material is negative. In some implementations, the effective index of refraction value for the composite material of 1 or less is at least in a wavelength of one of at least a visible spectrum, an infrared spectrum, a microwave spectrum, and/or an ultraviolet spectrum.
    Type: Grant
    Filed: July 12, 2013
    Date of Patent: January 24, 2017
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Cheol Park, Jin Ho Kang, Keith L. Gordon, Godfrey Sauti, Sharon E. Lowther, Robert G. Bryant
  • Patent number: 9550870
    Abstract: A novel method to develop highly conductive functional materials which can effectively shield various electromagnetic effects (EMEs) and harmful radiations. Metallized nanotube polymer composites (MNPC) are composed of a lightweight polymer matrix, superstrong nanotubes (NT), and functional nanoparticle inclusions. MNPC is prepared by supercritical fluid infusion of various metal precursors (Au, Pt, Fe, and Ni salts), incorporated simultaneously or sequentially, into a solid NT-polymer composite followed by thermal reduction. The infused metal precursor tends to diffuse toward the nanotube surface preferentially as well as the surfaces of the NT-polymer matrix, and is reduced to form nanometer-scale metal particles or metal coatings. The conductivity of the MNPC increases with the metallization, which provides better shielding capabilities against various EMEs and radiations by reflecting and absorbing EM waves more efficiently.
    Type: Grant
    Filed: November 26, 2008
    Date of Patent: January 24, 2017
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Cheol Park, Joycelyn S. Harrison, Negin Nazem, Larry Taylor, Jin Ho Kang, Jae-Woo Kim, Godfrey Sauti, Peter T. Lillehei, Sharon E. Lowther
  • Patent number: 9546678
    Abstract: A structural joint is formed of a mandrel having a plurality of bumps and dimples formed thereon which is fitted into a sleeve. The bumps and dimples form a non-circular geometry at all points along the length of the mandrel. The bumps are defined by surfaces which have 1st and 2nd derivatives which are continuous.
    Type: Grant
    Filed: December 13, 2013
    Date of Patent: January 17, 2017
    Assignee: THE UNITED STATES OF AMERICA AS REPRESENTED BY THE ADMINISTRATOR OF THE NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
    Inventors: K. Chauncey Wu, Robert A. Martin, Brian K. Stewart
  • Patent number: 9546008
    Abstract: Miniature release mechanisms constrain objects, such as deployables during the launch of space vehicles, such as small satellites and nanosatellites, and enable the release of the objects once a desired destination is reached by the space vehicle. Constraint and release of the objects are achieved by providing a secure threaded interface that may be released by the release mechanisms. The release mechanisms include a housing structure; a release block can include a threaded interface; one or more retracting pins; one or more release springs; a breakable link, such as a plastic link; a cable harness clamp; and a circuit board. The release mechanism can be 0.1875 inches (approximately 4.8 mm) thick.
    Type: Grant
    Filed: September 30, 2014
    Date of Patent: January 17, 2017
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Luis H. Santos Soto, Scott V. Hesh, John D. Hudeck