Patents Assigned to The United States of America as represented by the Department of Energy
  • Patent number: 6605920
    Abstract: Apparatus and method for providing digital signal processing method for controlling the speed and phase of a motor involves inputting a reference signal having a frequency and relative phase indicative of a time based signal; modifying the reference signal to introduce a slew-rate limited portion of each cycle of the reference signal; inputting a feedback signal having a frequency and relative phase indicative of the operation of said motor; modifying the feedback signal to introduce a slew-rate limited portion of each cycle of the feedback signal; analyzing the modified reference signal and the modified feedback signal to determine the frequency of the modified reference signal and of the modified feedback signal and said relative phase between said modified reference signal and said modified feedback signal; and outputting control signals to the motor for adjusting said speed and phase of the motor based on the frequency determination and determination of the relative phase.
    Type: Grant
    Filed: November 6, 2001
    Date of Patent: August 12, 2003
    Assignee: The United States of America as represented by the Department of Energy
    Inventors: Chris R. Rose, Ronald O. Nelson
  • Patent number: 6605901
    Abstract: An apparatus and method to contain plasma at optimal fill capacity of a metallic container is disclosed. The invention includes the utilization of anodized layers forming the internal surfaces of the container volume. Bias resistors are calibrated to provide constant current at variable voltage conditions. By choosing the appropriate values of the bias resistors, the voltages of the metallic container relative to the voltage of an anode are adjusted to achieve optimal plasma fill while minimizing the chance of reaching the breakdown voltage of the anodized layer.
    Type: Grant
    Filed: January 3, 2002
    Date of Patent: August 12, 2003
    Assignee: The United States of America as represented by the Department of Energy
    Inventors: Mark A. Rhodes, Scott N. Fochs
  • Patent number: 6566561
    Abstract: The invention relates to a class of phenoxy fluoro-alcohols, their preparation, and their use as phase modifiers and solvating agents in a solvent composition for the extraction of cesium from alkaline solutions. These phenoxy fluoro-alcohols comply with the formula: in which n=2 to 4; X represents a hydrogen or a fluorine atom, and R2-R6 are hydrogen or alkyl substituents. These phenoxy fluoro-alcohol phase modifiers are a necessary component to a robust solvent composition and process useful for the removal of radioactive cesium from alkaline nuclear waste streams. The fluoro-alcohols can also be used in solvents designed to extract other cesium from acidic or neutral solutions.
    Type: Grant
    Filed: November 2, 2000
    Date of Patent: May 20, 2003
    Assignee: The United States of America as represented by the Department of Energy
    Inventors: Peter V. Bonnesen, Bruce A. Moyer, Richard A. Sachleben
  • Patent number: 6560314
    Abstract: A converter and method for converting electron energy to irradiative energy comprising foam and/or foil. Foam and foil optionally comprise a high-Z material, such as, but not limited to, tantalum.
    Type: Grant
    Filed: February 28, 2001
    Date of Patent: May 6, 2003
    Assignee: The United States of America as represented by the Department of Energy
    Inventor: Peter Poulsen
  • Patent number: 6551478
    Abstract: A flexible pH probe device is provided for use in hot water and other high temperature environments up to about 590° F. The pH probe includes a flexible, inert tubular probe member, an oxygen anion conducting, solid state electrolyte plug located at the distal end of the tubular member, oxide powder disposed at the distal end of the tubular member; a metal wire extending along the tubular member and having a distal end in contact with the oxide powder so as to form therewith an internal reference electrode; and a compression fitting forming a pressure boundary seal around a portion of the tubular member remote from the distal end thereof. Preferably, the tubular member is made of polytetrafluoroethylene, and the solid state electrolyte plug is made of stabilized zirconia. The flexibility of the probe member enables placement of the electrode into the area of interest, including around corners, into confined areas and the like.
    Type: Grant
    Filed: April 9, 2001
    Date of Patent: April 22, 2003
    Assignee: The United States of America as represented by the Department of Energy
    Inventors: John C. Bielawski, John O. Outwater, George P. Halbfinger
  • Patent number: 6544330
    Abstract: A bonded, walk-off compensated crystal, for use with optical equipment, and methods of making optical components including same.
    Type: Grant
    Filed: February 14, 2001
    Date of Patent: April 8, 2003
    Assignee: The United States of America as represented by the Department of Energy
    Inventor: Christopher A. Ebbers
  • Patent number: 6482380
    Abstract: A new microporous crystalline molecular sieve material having the formula Cs3TiSi3O95•3H2O and its hydrothermally condensed phase, Cs2TiSi6O15, are disclosed. The microporous material can adsorb divalent ions of radionuclides or other industrial metals such as chromium, nickel, lead, copper, cobalt, zinc, cadmium, barium, and mercury, from aqueous or hydrocarbon solutions. The adsorbed metal ions can be leached out for recovery purposes or the microporous material can be hydrothermally condensed to a radiation resistant, structurally and chemically stable phase which can serve as a storage waste form for radionuclides.
    Type: Grant
    Filed: November 22, 2000
    Date of Patent: November 19, 2002
    Assignee: The United States of America as represented by the Department of Energy
    Inventors: Tina M. Nenoff, May D. Nyman
  • Patent number: 6472579
    Abstract: Solidification of liquid radioactive waste, and other hazardous wastes, is accomplished by the method of the invention by incorporating the waste into a porous glass crystalline molded block. The porous block is first loaded with the liquid waste and then dehydrated and exposed to thermal treatment at 50-1,000° C. The porous glass crystalline molded block consists of glass crystalline hollow microspheres separated from fly ash (cenospheres), resulting from incineration of fossil plant coals. In a preferred embodiment, the porous glass crystalline blocks are formed from perforated cenospheres of grain size −400+50, wherein the selected cenospheres are consolidated into the porous molded block with a binder, such as liquid silicate glass. The porous blocks are then subjected to repeated cycles of saturating with liquid waste, and drying, and after the last cycle the blocks are subjected to calcination to transform the dried salts to more stable oxides.
    Type: Grant
    Filed: November 27, 2000
    Date of Patent: October 29, 2002
    Assignee: The United States of America as represented by the Department of Energy
    Inventors: Alexander G. Anshits, Tatiana A. Vereshchagina, Elena N. Voskresenskaya, Eduard M. Kostin, Vyacheslav F. Pavlov, Yurii A. Revenko, Alexander A. Tretyakov, Olga M. Sharonova, Albert S. Aloy, Natalia V. Sapozhnikova, Dieter A. Knecht, Troy J. Tranter, Yevgeny Macheret
  • Patent number: 6445024
    Abstract: The fabrication of ferromagnet-insulator-ferromagnet magnetic tunneling junction devices using a ramp-edge geometry based on, e.g., (La0.7Sr0.3) MnO3, ferromagnetic electrodes and a SrTiO3 insulator is disclosed. The maximum junction magnetoresistance (JMR) as large as 23% was observed below 300 Oe at low temperatures (T<100 K). These ramp-edge junctions exhibited JMR of 6% at 200 K with a field less than 100 Oe.
    Type: Grant
    Filed: January 25, 2000
    Date of Patent: September 3, 2002
    Assignee: The United States of America, as represented by the Department of Energy
    Inventors: Chuhee Kwon, Quanxi Jia
  • Patent number: 6425263
    Abstract: A process for the separation and liquefaction of component gasses from a pressurized mix gas stream is disclosed. The process involves cooling the pressurized mixed gas stream in a heat exchanger so as to condensing one or more of the gas components having the highest condensation point; separating the condensed components from the remaining mixed gas stream in a gas-liquid separator; cooling the separated condensed component stream by passing it through an expander; and passing the cooled component stream back through the heat exchanger such that the cooled component stream functions as the refrigerant for the heat exchanger. The cycle is then repeated for the remaining mixed gas stream so as to draw off the next component gas and further cool the remaining mixed gas stream. The process continues until all of the component gases are separated from the desired gas stream. The final gas stream is then passed through a final heat exchanger and expander.
    Type: Grant
    Filed: August 23, 2001
    Date of Patent: July 30, 2002
    Assignee: The United States of America as represented by the Department of Energy
    Inventors: Dennis N. Bingham, Bruce M. Wilding, Michael G. McKellar
  • Patent number: 6403755
    Abstract: A new phosphazene-based polyester macro-molecule is provided, as is a method for producing the macro-molecule.
    Type: Grant
    Filed: March 7, 2001
    Date of Patent: June 11, 2002
    Assignee: The United States of America as represented by the Department of Energy
    Inventors: Frederick F. Stewart, Thomas A. Luther, Mason K. Harrup
  • Patent number: 6397682
    Abstract: A method is disclosed for determining the resistance of polycrystalline materials to intergranular degradation or failure (IGDF), by analyzing the random grain boundary network connectivity (RGBNC) microstructure. Analysis of the disruption of the RGBNC microstructure may be assess the effectiveness of materials processing in increasing IGDF resistance.
    Type: Grant
    Filed: February 9, 2001
    Date of Patent: June 4, 2002
    Assignee: The United States of America as represented by the Department of Energy
    Inventors: Mukul Kumar, Adam J. Schwartz, Wayne E. King
  • Patent number: 6399393
    Abstract: An apparatus and process for producing a homogeneous analytical sample from a heterogenous feedstock by: providing the mixed feedstock, reducing the temperature of the feedstock to a temperature below a critical temperature, reducing the size of the feedstock components, blending the reduced size feedstock to form a homogeneous mixture; and obtaining a representative sample of the homogeneous mixture. The size reduction and blending steps are performed at temperatures below the critical temperature in order to retain organic compounds in the form of solvents, oils, or liquids that may be adsorbed onto or absorbed into the solid components of the mixture, while also improving the efficiency of the size reduction. Preferably, the critical temperature is less than 77 K (−196° C.). Further, with the process of this invention the representative sample may be maintained below the critical temperature until being analyzed.
    Type: Grant
    Filed: September 21, 1999
    Date of Patent: June 4, 2002
    Assignee: The United States of America as represented by the Department of Energy
    Inventors: Glenn Michael Doyle, Virgene Linda Ideker, James David Siegwarth
  • Patent number: 6384990
    Abstract: The present invention is a two position optical element actuator device utilizing a powered means to hold an actuation arm, to which an optical element is attached, in a first position. A non-powered means drives the actuation arm to a second position, when the powered means ceases to receive power. The optical element may be a electromagnetic (EM) radiation or particle source, an instrument, or EM radiation or particle transmissive, reflective or absorptive elements. A bearing is used to transfer motion and smoothly transition the actuation arm from the first to second position.
    Type: Grant
    Filed: September 21, 2000
    Date of Patent: May 7, 2002
    Assignee: The United States of America, as represented by the Department of Energy
    Inventors: Fred R. Holdener, Robert D. Boyd
  • Patent number: 6376794
    Abstract: A percussive arc welding apparatus includes a generally cylindrical actuator body having front and rear end portions and defining an internal recess. The front end of the body includes an opening. A solenoid assembly is provided in the rear end portion in the internal recess of the body, and an actuator shaft assembly is provided in the front end portion in the internal recess of the actuator body. The actuator shaft assembly includes a generally cylindrical actuator block having first and second end portions, and an actuator shaft having a front end extending through the opening in the actuator body, and the rear end connected to the first end portion of the actuator block. The second end portion of the actuator block is in operational engagement with the solenoid shaft by a non-rigid connection to reduce the adverse rebound effects of the actuator shaft. A generally transversely extending pin is rigidly secured to the rear end of the shaft.
    Type: Grant
    Filed: November 2, 2000
    Date of Patent: April 23, 2002
    Assignee: The United States of America as represented by the Department of Energy
    Inventor: Donald L. Hollar, Jr.
  • Patent number: 6365019
    Abstract: A basket, for use in the reduction of UO2 to uranium metal and in the electrorefining of uranium metal, having a continuous annulus between inner and outer perforated cylindrical walls, with a screen adjacent to each wall. A substantially solid bottom and top plate enclose the continuous annulus defining a fuel bed. A plurality of scrapers are mounted adjacent to the outer wall extending longitudinally thereof, and there is a mechanism enabling the basket to be transported remotely.
    Type: Grant
    Filed: August 25, 2000
    Date of Patent: April 2, 2002
    Assignee: The United States of America as represented by the Department of Energy
    Inventors: Steven D. Herrmann, Robert D. Mariani
  • Patent number: 6361893
    Abstract: A plurality of nail current collector members are useful in the gas flow passages of an electrochemical device to optimize the active surfaces of the device and to provide structural support. In addition, the thicknesses of cathode and anode layers within the electrochemical device are varied according to current flow through the device to reduce resistance and increase operating efficiency.
    Type: Grant
    Filed: November 26, 1999
    Date of Patent: March 26, 2002
    Assignee: The United States of America as represented by the Department of Energy
    Inventors: Thomas J. George, G. B. Kirby Meacham
  • Patent number: 6332914
    Abstract: The present invention is a bi-thermal membrane process for separating and recovering hydrogen isotopes from a fluid containing hydrogen isotopes, such as water and hydrogen gas. The process in accordance with the present invention provides counter-current cold and hot streams of the fluid separated with a thermally insulating and chemically transparent proton exchange membrane (PEM). The two streams exchange hydrogen isotopes through the membrane: the heavier isotopes migrate into the cold stream, while the lighter isotopes migrate into the hot stream. The heavy and light isotopes are continuously withdrawn from the cold and hot streams respectively.
    Type: Grant
    Filed: February 28, 2000
    Date of Patent: December 25, 2001
    Assignee: The United States of America as represented by the Department of Energy
    Inventor: Myung W. Lee
  • Patent number: 6333072
    Abstract: Provided is a process of producing an adherent synthetic corrosion product (sludge) coating on metallic surfaces. The method involves a chemical reaction between a dry solid powder mixture of at least one reactive metal oxide with orthophosphoric acid to produce a coating in which the particles are bound together and the matrix is adherent to the metallic surface.
    Type: Grant
    Filed: December 23, 1999
    Date of Patent: December 25, 2001
    Assignee: The United States of America as represented by the Department of Energy
    Inventors: Michael H. Lane, Robert D. Varrin, Jr.
  • Patent number: 6310253
    Abstract: A method is disclosed for the preparation of very small particle size, relatively pure 1,3,5-triamino-2,4,6-trinitrobenzene (TATB). Particles of TATB prepared according to the disclosed method are of submicron size and have a surface area in the range from about 3.8 to 27 square meters per gram.
    Type: Grant
    Filed: May 22, 1985
    Date of Patent: October 30, 2001
    Assignee: The United States of America as represented by the Department of Energy
    Inventors: Lester P. Rigdon, Gordon L. Moody, Raymond R. McGuire