Patents Assigned to The United States of America as represented by the National Aeronautics and Space Administration
  • Patent number: 9896681
    Abstract: The present invention provides methods to modify the genetic regulation of mammalian tissue, bone, cells or any combination thereof by preferential activation, up-regulation and/or down-regulation. The method comprises steps of tuning the predetermined profiles of one or more time-varying stimulation fields by manipulating the B-Field magnitude, rising slew rate, rise time, falling slew rate, fall time, frequency, wavelength, and duty cycle, and exposing mammalian cells or tissues to one or more tuned time-varying stimulation fields with predetermined profiles. Examples of mammalian cells or tissues are chondrocytes, osteoblasts, osteocytes, osteoclasts, nucleus pulposus, associated tissue, or any combination. The resulted modification on gene regulation of these cells, tissues or bones may promote the retention, repair of and reduction of compromised mammalian cartilage, bone, and associated tissue.
    Type: Grant
    Filed: July 29, 2014
    Date of Patent: February 20, 2018
    Assignee: The United States of America as represented by the National Aeronautics and Space Administration
    Inventors: Thomas J. Goodwin, Linda C. Shackelford
  • Patent number: 9862507
    Abstract: Thermal control louvers for CubeSats or small spacecraft may include a plurality of springs attached to a back panel of the thermal control louvers. The thermal control louvers may also include a front panel, which includes at least two end panels interlocked with one or more middle panels. The front panel may secure the springs, shafts, and flaps to the back panel.
    Type: Grant
    Filed: September 28, 2015
    Date of Patent: January 9, 2018
    Assignee: The United States of America as represented by the National Aeronautics and Space Administration
    Inventor: Allison L. Evans
  • Patent number: 8952242
    Abstract: A photovoltaic device includes one or more structures, an array of at least one of quantum dots and quantum dashes, at least one groove, and at least one conductor. Each of the structures comprises an intrinsic layer on one of an n type layer and a p type layer and the other one of the n type layer and the p type layer on the intrinsic layer. The array of at least one of quantum dots and quantum dashes is located in the intrinsic layer in at least one of the structures. The groove extends into at least one of the structures and the conductor is located along at least a portion of the groove.
    Type: Grant
    Filed: December 3, 2009
    Date of Patent: February 10, 2015
    Assignees: Rochester Institute of Technology, The United States of America as represented by the National Aeronautics and Space Administration
    Inventors: Ryne P. Raffaele, David M. Wilt
  • Patent number: 8557576
    Abstract: The present disclosure provides ex vivo-derived mineralized three-dimensional bone constructs. The bone constructs are obtained by culturing osteoblasts and osteoclast precursors under randomized gravity vector conditions. Preferably, the randomized gravity vector conditions are obtained using a low shear stress rotating bioreactor, such as a High Aspect Ratio Vessel (HARV) culture system. The bone constructs of the disclosure have utility in physiological studies of bone formation and bone function, in drug discovery, and in orthopedics.
    Type: Grant
    Filed: May 17, 2010
    Date of Patent: October 15, 2013
    Assignees: The United States of America as represented by the National Aeronautics and Space Administration, University of Houston, Universities Space Research Association
    Inventors: Mark S. F. Clarke, Alamelu Sundaresan, Neal R. Pellis
  • Patent number: 8456392
    Abstract: The present invention provides a method of manufacturing an electronic apparatus, such as a lighting device having light emitting diodes (LEDs) or a power generating device having photovoltaic diodes. The exemplary method includes forming at least one first conductor coupled to a base; coupling a plurality of substantially spherical substrate particles to the at least one first conductor; converting the substrate particles into a plurality of substantially spherical diodes; forming at least one second conductor coupled to the substantially spherical diodes; and depositing or attaching a plurality of substantially spherical lenses suspended in a first polymer. The lenses and the suspending polymer have different indices of refraction. In some embodiments, the lenses and diodes have a ratio of mean diameters or lengths between about 10:1 and 2:1. In various embodiments, the forming, coupling and converting steps are performed by or through a printing process.
    Type: Grant
    Filed: September 15, 2009
    Date of Patent: June 4, 2013
    Assignees: NthDegree Technologies Worldwide Inc, The United States of America as represented by the National Aeronautics and Space Administration
    Inventors: William Johnstone Ray, Mark D. Lowenthal, Neil O. Shotton, Richard A. Blanchard, Mark Allan Lewandowski, Kirk A. Fuller, Donald Odell Frazier
  • Patent number: 8193280
    Abstract: Ionic liquid epoxide monomers that react with cross-linking agents to form polymers exhibiting high tensile and adhesive strengths are described. The polymers exhibit high tensile and adhesive strengths at extremely low temperatures and are stable at elevated temperatures. The polymer resins are particularly well-suited for use as adhesives, and in coatings, composites, and articles of manufacture.
    Type: Grant
    Filed: July 4, 2008
    Date of Patent: June 5, 2012
    Assignees: AZ Technology, Inc., The United States of America as represented by the National Aeronautics and Space Administration
    Inventors: Mark S. Paley, Rhonda S. Libb, Richard N. Grugel, Richard Ernest Boothe
  • Patent number: 8182741
    Abstract: Disclosed herein is a friction reducing nickel-titanium composition. The nickel-titanium composition includes a first phase that comprises nickel and titanium in an atomic ratio of about 0.45:0.55 to about 0.55:0.45; a second phase that comprises nickel and titanium in an atomic ratio of about 0.70:0.30 to about 0.80:0.20; and a third phase that comprises nickel and titanium in an atomic ratio of about 0.52:0.48 to about 0.62:0.38. A bearing for reducing friction comprising a nickel-titanium composition comprising a first phase that comprises nickel and titanium in an atomic ratio of about 0.45:0.55 to about 0.55:0.45; a second phase that comprises nickel and titanium in an atomic ratio of about 0.70:0.30 to about 0.80:0.20; and a third phase that comprises nickel and titanium in an atomic ratio of about 0.52:0.48 to about 0.62:0.38; where the bearing is free from voids and pinholes.
    Type: Grant
    Filed: August 20, 2009
    Date of Patent: May 22, 2012
    Assignees: The United States of America as represented by the National Aeronautics and Space Administration, Abbott Ball Company
    Inventors: Christopher DellaCorte, Glenn N. Glennon
  • Patent number: 7949472
    Abstract: Method and system for rapid and accurate determination of each of a sequence of unknown polymer components, such as nucleic acid components. A self-assembling monolayer of a selected substance is optionally provided on an interior surface of a pipette tip, and the interior surface is immersed in a selected liquid. A selected electrical field is impressed in a longitudinal or transverse direction at the tip, a polymer sequence is passed through the tip, and a change in an electrical current signal is measured as each polymer component passes through the tip. Each measured change in electrical current signals is compared with a database of reference signals, with each reference signal identified with a polymer component, to identify the unknown polymer component. The tip preferably has a pore inner diameter of no more than about 40 nm and is prepared by heating and pulling a very small section of a glass tubing.
    Type: Grant
    Filed: June 24, 2004
    Date of Patent: May 24, 2011
    Assignee: The United States of America as represented by the National Aeronautics and Space Administration
    Inventors: Viktor Stolc, Mathew W. Brock
  • Patent number: 7876423
    Abstract: A process for simultaneously measuring the velocity of terahertz electromagnetic radiation in a dielectric material sample without prior knowledge of the thickness of the sample and for measuring the thickness of a material sample using terahertz electromagnetic radiation in a material sample without prior knowledge of the velocity of the terahertz electromagnetic radiation in the sample is disclosed and claimed. The process evaluates, in a plurality of locations, the sample for microstructural variations and for thickness variations and maps the microstructural and thickness variations by location. A thin sheet of dielectric material may be used on top of the sample to create a dielectric mismatch. The approximate focal point of the radiation source (transceiver) is initially determined for good measurements.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: January 25, 2011
    Assignee: The United States of America as represented by the National Aeronautics and Space Administration
    Inventor: Donald J Roth
  • Patent number: 7763325
    Abstract: An apparatus and method for thermal spraying a metal coating on a substrate is accomplished with a modified pulsejet and optionally an ejector to assist in preventing oxidation. Metal such as Aluminum or Magnesium may be used. A pulsejet is first initiated by applying fuel, air, and a spark. Metal is inserted continuously in a high volume of metal into a combustion chamber of the pulsejet. The combustion is thereafter controlled resonantly at high frequency and the metal is heated to a molten state. The metal is then transported from the combustion chamber into a tail pipe of said pulsejet and is expelled therefrom at high velocity and deposited on a target substrate.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: July 27, 2010
    Assignee: The United States of America as represented by the National Aeronautics and Space Administration
    Inventor: Daniel E. Paxson
  • Patent number: 7715994
    Abstract: The invention is an improved process for using surface strain data to obtain real-time, operational loads data for complex structures that significantly reduces the time and cost versus current methods.
    Type: Grant
    Filed: August 14, 2008
    Date of Patent: May 11, 2010
    Assignee: The United States of America as represented by the National Aeronautics and Space Administration
    Inventors: William Lance Richards, William L. Ko
  • Patent number: 7702427
    Abstract: Method and system for evaluating and implementing air traffic management tools and approaches for managing and avoiding an air traffic incident before the incident occurs. The invention provides flight plan routing and direct routing or wind optimal routing, using great circle navigation and spherical Earth geometry. The invention provides for aircraft dynamics effects, such as wind effects at each altitude, altitude changes, airspeed changes and aircraft turns to provide predictions of aircraft trajectory (and, optionally, aircraft fuel use). A second system provides several aviation applications using the first system. These applications include conflict detection and resolution, miles-in trail or minutes-in-trail aircraft separation, flight arrival management, flight re-routing, weather prediction and analysis and interpolation of weather variables based upon sparse measurements.
    Type: Grant
    Filed: July 30, 2004
    Date of Patent: April 20, 2010
    Assignee: The United States of America as represented by the National Aeronautics and Space Administration (NASA)
    Inventors: Banavar Sridhar, Kapil S. Sheth, Gano Broto Chatterji, Karl D. Bilimoria, Shon Grabbe, John F. Schipper
  • Patent number: 7609978
    Abstract: A signal conditioning module provides a polarimeter capability in a photometric system. The module may include multiple variable delay polarization modulators. Each modulator may include an input port, and a first arm formed to include a first reflector and first rooftop mirror arranged in opposed relationship. The first reflector may direct an input radiation signal to the first rooftop mirror. Each modulator also may include an output port and a second arm formed to include a second reflector and second rooftop mirror arranged in opposed relationship. The second reflector can guide a signal from the second rooftop mirror towards the output port to provide an output radiation signal. A beamsplitting grid may be placed between the first reflector and the first rooftop mirror, and also between the second reflector and the second rooftop mirror. A translation apparatus can provide adjustment relative to optical path length vis-à-vis the first arm, the second arm and the grid.
    Type: Grant
    Filed: March 27, 2008
    Date of Patent: October 27, 2009
    Assignee: The United States of America as represented by the National Aeronautics and Space Administration
    Inventors: Edward J. Wollack, Samuel H. Moseley, Giles A. Novak, David T. Chuss
  • Patent number: 7604782
    Abstract: A sublimator includes a sublimation plate having a thermal element disposed adjacent to a feed water channel and a control point disposed between at least a portion of the thermal element and a large pore substrate. The control point includes a sintered metal material. A method of dissipating heat using a sublimator includes a sublimation plate having a thermal element and a control point. The thermal element is disposed adjacent to a feed water channel and the control point is disposed between at least a portion of the thermal element and a large pore substrate. The method includes controlling a flow rate of feed water to the large pore substrate at the control point and supplying heated coolant to the thermal element. Sublimation occurs in the large pore substrate and the controlling of the flow rate of feed water is independent of time.
    Type: Grant
    Filed: January 22, 2007
    Date of Patent: October 20, 2009
    Assignee: The United States of America as represented by the National Aeronautics and Space Administration
    Inventors: Charles W. Dingell, Clemente E. Quintana, Suy Le, Michael R. Clark, Robert E. Cloutier, David Scott Hafermalz
  • Patent number: 7592747
    Abstract: A photocathode, for generating electrons in response to incident photons in a photodetector, includes a base layer having a first lattice structure and an active layer having a second lattice structure and epitaxially formed on the base layer, the first and second lattice structures being sufficiently different to create a strain in the active layer with a corresponding piezoelectrically induced polarization field in the active layer, the active layer having a band gap energy corresponding to a desired photon energy.
    Type: Grant
    Filed: February 9, 2005
    Date of Patent: September 22, 2009
    Assignee: The United States of America as represented by the National Aeronautics and Space Administration
    Inventors: Robert A. Beach, Shouleh Nikzad, Robert P. Strittmatter, Lloyd Douglas Bell
  • Patent number: 7589525
    Abstract: A magnetic field response sensor comprises an inductor placed at a fixed separation distance from a conductive surface to address the low RF transmissivity of conductive surfaces. The minimum distance for separation is determined by the sensor response. The inductor should be separated from the conductive surface so that the response amplitude exceeds noise level by a recommended 10 dB. An embodiment for closed cavity measurements comprises a capacitor internal to said cavity and an inductor mounted external to the cavity and at a fixed distance from the cavity's wall. An additional embodiment includes a closed cavity configuration wherein multiple sensors and corresponding antenna are positioned inside the cavity, with the antenna and inductors maintained at a fixed distance from the cavity's wall.
    Type: Grant
    Filed: June 2, 2006
    Date of Patent: September 15, 2009
    Assignee: The United States of America as represented by the National Aeronautics and Space Administration
    Inventors: Stanley E. Woodard, Bryant D. Taylor
  • Patent number: 7570850
    Abstract: An optical system, device, and method that are capable of generating high-order Bessel beams and determining the orbital angular momentum of at least one of the photons of a Bessel beam are provided. The optical system and device include a tapered waveguide having an outer surface defined by a diameter that varies along a longitudinal axis of the waveguide from a first end to an opposing second end. The optical system and device include a resonator that is arranged in optical communication with the first end of the tapered waveguide such that an evanescent field emitted from (i) the waveguide can be coupled with the resonator, or (ii) the resonator can be coupled with the waveguide.
    Type: Grant
    Filed: June 19, 2006
    Date of Patent: August 4, 2009
    Assignee: The United States of America as represented by the National Aeronautics and Space Administration
    Inventors: Andrey B. Matsko, Anatoliy A. Savchenkov, Lute Maleki, Dmitry V. Strekalov
  • Patent number: 7535634
    Abstract: An optical device, optical system, and method of generating optical beams having high angular momenta are provided. The optical device includes a whispering gallery mode resonator defining a resonator radius and an elongated waveguide having a length defined between a first end and a second end of the waveguide. The waveguide defines a waveguide radius which increases at least along a portion of the length of the waveguide in a direction from the first end to the second end. The waveguide radius at the first end of the waveguide is smaller than the resonator radius and the resonator is integrally formed with the first end of the waveguide.
    Type: Grant
    Filed: February 16, 2007
    Date of Patent: May 19, 2009
    Assignee: The United States of America as represented by the National Aeronautics and Space Administration
    Inventors: Anatoliy A. Savchenkov, Andrey B. Matsko, Dmitry V. Strekalov, Ivan S. Grudinin, Lute Maleki
  • Patent number: 7529633
    Abstract: Method and system for determining chemical composition of a single-component or multiple-component gas, using a discharge holdoff mechanism. A voltage difference V between two spaced apart electrodes is brought to a selected value and held, the holdoff time interval ?t(V;ho) required before gas discharge occurs is measured, and the associated electrical current or cumulative electrical charge is measured. As the voltage difference V increases, the time interval length ?t(V;ho) decreases monotonically. Particular voltage values, V? and V0, correspond to initial appearance of discharge (?t??) and prompt discharge (?t?0). The values V? and V0 and the rate of decrease of ?t(V;ho) and/or the rate of increase of current or cumulative charge with increasing V are characteristic of one or more gas components present.
    Type: Grant
    Filed: August 5, 2005
    Date of Patent: May 5, 2009
    Assignee: The United States of America as represented by the National Aeronautics and Space Administration (NASA)
    Inventors: John F. Schipper, Jing Li
  • Patent number: 7521682
    Abstract: Processing circuitry is provided for a high voltage operated radiation detector. An event detector utilizes a comparator configured to produce an event signal based on a leading edge threshold value. A preferred event detector does not produce another event signal until a trailing edge threshold value is satisfied. The event signal can be utilized for counting the number of particle hits and also for controlling data collection operation for a peak detect circuit and timer. The leading edge threshold value is programmable such that it can be reprogrammed by a remote computer. A digital high voltage control is preferably operable to monitor and adjust high voltage for the detector.
    Type: Grant
    Filed: May 31, 2006
    Date of Patent: April 21, 2009
    Assignee: The United States of America as represented by the National Aeronautics and Space Administration
    Inventors: Samuel D. Holland, Paul B. Delaune, Kathryn M. Turner