Patents Assigned to The United States of America as represented by the Secretary of Agriculture
  • Patent number: 10737958
    Abstract: Disclosed herein are processes for treating high-P fluid involving (1) providing a high-P containing stream; (2) chemically treating the high-P stream such that a majority of dissolved P in the stream is transformed into a solid form via sorption of P onto particles placed or precipitated within the stream; and (3) removing the solid form containing P from the chemically treated fine solids stream, such that > about 90% of the total P is removed from the high-P fluid. Also disclosed are systems for treating a high-P stream, the systems involving (1) a chemical treatment station operable to chemically treat and transform equal to or greater than about 90% of dissolved P in a high-P stream into a solid form; and (2) a liquid-solid separator station operable to remove the solid form containing P from the chemically treated high-P stream.
    Type: Grant
    Filed: September 11, 2017
    Date of Patent: August 11, 2020
    Assignees: The United States of America, as represented by the Secretary of Agriculture, The Penn State Research Foundation
    Inventors: Clinton Church, Ray B. Bryant, Peter J. Kleinman, Alex Hristov
  • Patent number: 10729756
    Abstract: Multiple DIVA vaccines effective against porcine reproductive and respiratory syndrome virus (PRRSV) are disclosed. The DIVA vaccines may be negative DIVAs or positive DIVAs. The DIVA vaccines may be produced by modifying the nsp2 region of a modified live virus vaccine. The modification may be one or more deletions only (negative DIVAs) or a deletion with an insertion (positive DIVAs). The insertion may be of an epitope tag, such as a V5, S-Tag, or FLAG tag. Produced DIVA vaccines may be stable through multiple passes and thus may be effective for production and vaccination of animals.
    Type: Grant
    Filed: May 25, 2018
    Date of Patent: August 4, 2020
    Assignee: The United States of America, as represented by the Secretary of Agriculture
    Inventors: Kay S. Faaberg, Allyn Spear, Matthew A. Kappes, Kelly M. Lager
  • Patent number: 10731190
    Abstract: The invention relates to composite components and methods of producing composite components. In yet another embodiment, the present invention relates to a method of producing a composite component using anaerobically digested biomass. In still yet another embodiment, the method further comprises using liquid effluent from the digester. In still yet another embodiment, the method further comprises wet-mat forming and cold pressing the anaerobically digested biomass and wet-mat drying under heat and pressure.
    Type: Grant
    Filed: April 4, 2013
    Date of Patent: August 4, 2020
    Assignees: DVO. Inc., The United States of America as Represented by the Secretary of Agriculture
    Inventors: Stephen W. Dvorak, John F. Hunt
  • Patent number: 10723663
    Abstract: A system and method for separating nutrients, such as phosphorus and protein, from biological materials may be disclosed. Biological material, for example in the form of wet solids from raw manure, may first be separated out by a solid-liquid separator. The wet solids may then be dissolved in an acidic solution. The resulting supernatant from the acidic treatment may then be separated and phosphorus reclaimed therefrom. The resulting precipitate from the acidic treatment may be separated from the supernatant and treated with a basic solution. The resulting supernatant following the basic treatment may then be separated and protein reclaimed therefrom. In some embodiments, the supernatant resulting from the acidic treatment may itself be alkalinized, creating a precipitate which contains phosphorus solids and a supernatant which can be separated from the phosphorus solids and used as the basic solution with which to treat the precipitate resulting from the acidic treatment.
    Type: Grant
    Filed: November 5, 2018
    Date of Patent: July 28, 2020
    Assignee: The United States of America, as represented by the Secretary of Agriculture
    Inventors: Matias B. Vanotti, Ariel A. Szogi
  • Patent number: 10722561
    Abstract: A novel method of using an aquaporin protein from Rhipicephalus microplus (RmAQP2), fragments of RmAQP2, and/or the cDNA encoding RmAQP2 and/or the fragments are described. Immunogenic composition containing recombinant RmAQP2 and/or fragments of RmAQP2 are produced and administered to an ungulate which generates an immune response to RmAQP2. After feeding female ticks on the ungulate injected with RmAQP2 and/or fragments of RmAQP2, the female ticks have lower reproductive viability because of a reduced egg mass, reduced hatching percentage, and reduced survival of larvae. Thus, administering RmAQP2 and/or RmAQP2 fragments to an ungulate can reduce the incidence of R. microplus and also reduce the incidence of tick-borne pathogens in ungulates because of the lower number of R. microplus.
    Type: Grant
    Filed: July 12, 2018
    Date of Patent: July 28, 2020
    Assignee: The United States of America, as represented by the Secretary of Agriculture
    Inventors: Glen A. Scoles, Felicito Guerrero, Reginaldo Bastos
  • Patent number: 10718032
    Abstract: Novel time and temperature integrator (TTI) assays, kits containing the components of the assays, and the novel components for those assays are provided herein. These novel TTI assays evaluate and/or determine the inactivation of biological material in/on a sample by quantifying the degradation of DNA using qPCR. The sample can be a food product (e.g., fruits, vegetables, meat from animals, or eggs) while the item can be any object (e.g., medical equipment, especially reusable medical equipment) for which one needs to determine that the amount of inactivation of specific hazardous biological material on the object or in a sample is at or below a pre-determined amount.
    Type: Grant
    Filed: September 9, 2014
    Date of Patent: July 21, 2020
    Assignee: The United States of America, as represented by the Secretary of Agriculture
    Inventors: Ilenys M. Perez Diaz, Jane M. Caldwell
  • Publication number: 20200221684
    Abstract: The combination of a repellent agent or an attractant agent with a wavelength-specific visual cue agent has been found to produce an unexpected and synergistic effect of increased repellency or attraction in dichromatic animals who are not maximally sensitive to the wavelength of the repellent or attractant agent. The method of the invention may be used to repel dichromatic-animal pests; or to prevent or minimize monetary damage, particularly to agricultural products, natural resources or private property. The method of the invention may also be used to attract dichromatic animals for the purpose of agricultural production, recreational opportunities (e.g., wild-rodent feeders), or the effective administration of target-animal pharmaceuticals or mitigation techniques.
    Type: Application
    Filed: March 30, 2020
    Publication date: July 16, 2020
    Applicants: The United States of America, Represented by the Secretary of Agriculture, Arkion Life Sciences, LLC
    Inventors: Scott J. Werner, Kenneth E. Ballinger, JR.
  • Patent number: 10710937
    Abstract: A system and method for separating nutrients, such as phosphorus and protein, from biological materials may be disclosed. Biological material, for example in the form of wet solids from raw manure, may first be separated out by a solid-liquid separator. The wet solids may then be dissolved in an acidic solution, which may be created directly or by fermentation. The resulting supernatant from the acidic treatment may then be separated and phosphorus reclaimed therefrom. The resulting precipitate from the acidic treatment may be separated from the supernatant and treated with a basic solution. The resulting supernatant following the basic treatment may then be separated and protein reclaimed therefrom.
    Type: Grant
    Filed: May 8, 2019
    Date of Patent: July 14, 2020
    Assignee: The United States of America, as represented by the Secretary of Agriculture
    Inventors: Matias B. Vanotti, Ariel A. Szogi, Raul Moral Herrero
  • Patent number: 10711278
    Abstract: Two novel cDNAs for two different genes, HDT1 and HDT2, are isolated from red clover and sequenced. Both HDT1 and HDT2 encode hydroxycinnamoyl-CoA:L-DOPA/tyrosine hydroxycinnamoyl transferase (HDT) which enzymatically produces clovamide and/or related hydroxycinnamoyl amides. Clovamide and related hydroxycinnamoyl amides reduce post-harvest protein degradation. Genetically altered alfalfa plants containing an expression cassette containing a cDNA encoding HDT1 or HDT2 are generated. These genetically altered alfalfa plants produce hydroxycinnamoyl-CoA:L-DOPA/tyrosine hydroxycinnamoyl transferase, which in turn produces clovamide and/or related hydroxycinnamoyl amides.
    Type: Grant
    Filed: February 14, 2019
    Date of Patent: July 14, 2020
    Assignee: The United States of America, as represented by the Secretary of Agriculture
    Inventor: Michael L Sullivan
  • Patent number: 10689267
    Abstract: Disclosed are methods to remove organic and/or inorganic compounds (e.g., contaminants) from water containing organic and/or inorganic compounds, involving contacting the water with an effective organic and/or inorganic compounds removing amount of hemoglobin/Fe3O4 composite where the compounds in the water adsorb onto the hemoglobin/Fe3O4 composite, and removing (e.g., using a magnet since the composite is magnetic) the hemoglobin/Fe3O4 composite from the water.
    Type: Grant
    Filed: February 3, 2017
    Date of Patent: June 23, 2020
    Assignee: The United States of America, as represented by the Secretary of Agriculture
    Inventors: Matthew Essandoh, Rafael A. Garcia
  • Patent number: 10663446
    Abstract: Systems and methods for sampling within a conveyance system are provided herein, such systems and methods being particularly useful in batch sampling of food products for a targeted biological agent. In one aspect, the sampling system includes a conveyance system and one or more sampling devices positioned along a conveyance path such that at least one portion of the batch contacts a sampling medium of the one or more sampling devices. In another aspect, sampling devices are provided that allow a sampling member to be secured in a sampling position for batch testing and readily removed after sampling and tested. The systems, devices and methods herein provide improved sampling coverage of the entire batch and reduce waste and inefficiency as compared to conventional batch sampling methods.
    Type: Grant
    Filed: February 18, 2015
    Date of Patent: May 26, 2020
    Assignees: FREMONTA Corporation, THE UNITED STATES OF AMERICA AS REPRESENTED BY THE SECRETARY OF AGRICULTURE
    Inventors: Florence Wu, Yongqing Huang, Terrance Arthur, Tommy Wheeler
  • Patent number: 10638754
    Abstract: Methods of attracting Drosophila suzukii, involving treating an object or area with a Drosophila suzukii attracting effective amount of a composition containing acetoin and at least one compound selected from ethyl octanoate, acetic acid, ethyl acetate, phenethyl alcohol, or mixtures thereof; wherein said composition does not contain ethanol.
    Type: Grant
    Filed: September 6, 2018
    Date of Patent: May 5, 2020
    Assignee: The United States of America, as represented by the Secretary of Agriculture
    Inventors: Aijun Zhang, Yan Feng
  • Patent number: 10638745
    Abstract: The combination of a repellent agent or an attractant agent with a wavelength-specific visual cue agent has been found to produce an unexpected and synergistic effect of increased repellency or attraction in dichromatic animals who are not maximally sensitive to the wavelength of the repellent or attractant agent. The method of the invention may be used to repel dichromatic-animal pests; or to prevent or minimize monetary damage, particularly to agricultural products, natural resources or private property. The method of the invention may also be used to attract dichromatic animals for the purpose of agricultural production, recreational opportunities (e.g., wild-rodent feeders), or the effective administration of target-animal pharmaceuticals or mitigation techniques.
    Type: Grant
    Filed: January 4, 2017
    Date of Patent: May 5, 2020
    Assignees: Arkion Life Sciences, LLC, United States of America, as Represented by the Secretary of Agriculture
    Inventors: Scott J. Werner, Kenneth E. Ballinger, Jr.
  • Patent number: 10633671
    Abstract: Disclosed is a dsRNA construct used to silencing specific eukaryotic translation initiation factor in plants to produce a plant resistant to viruses such as Potyviruses, Luteoviruses, and Furoviruses. More specifically, the plant would be resistant to viruses such as Wheat streak mosaic virus, Triticum mosaic virus, Soil bourne mosaic virus, or Barley yellow dwarf virus. Also disclosed are non-transgenic wheat plants having the genes for eIF(iso)4E-2 or eIF4G silenced.
    Type: Grant
    Filed: January 19, 2018
    Date of Patent: April 28, 2020
    Assignee: The United States of America, as represented by the Secretary of Agriculture
    Inventors: John Fellers, Harold N. Trick, Luisa Cruz, Jessica Rupp
  • Patent number: 10617121
    Abstract: Strains of Chromobacterium sphagni sp. nov. are described which have insecticidal activity against insect larvae, in general, and lepidopteran insect larvae, in particular. A biocontrol agent containing one or more C. sphagni, media in which the C. sphagni, or both, and optionally a carrier are also described. Methods of killing insect larvae and methods of reducing insect populations in an area by applying to the area or an object an effective amount of the biocontrol agent are also described.
    Type: Grant
    Filed: April 10, 2019
    Date of Patent: April 14, 2020
    Assignee: The United States of America, as represented by the Secretary of Agriculture
    Inventors: Michael B. Blackburn, Dawn E. Gundersen-Rindal, Robert R. Farrar, Daniel J. Kuhar
  • Patent number: 10612063
    Abstract: The present disclosure provides methods for producing bioproducts from novel genetically altered strains of Aureobasidium pullulans. Methods and materials for the construction of these strains, examination of the bioproducts and analysis and isolation of the bioproducts from genetically altered strains is provided. Genetically altered A. pullulans strains in which one or more genes encoding biosynthetic enzymes are knocked out is detailed and the benefits of using such strains described.
    Type: Grant
    Filed: May 8, 2019
    Date of Patent: April 7, 2020
    Assignee: The United States of America, as represented by the Secretary of Agriculture
    Inventors: Christopher D. Skory, Timothy D. Leathers, Neil P. Price
  • Patent number: 10596185
    Abstract: This invention relates to a flavonoid composition that includes eriocitrin. The flavonoid may be included in a complex with other bioflavonoids. The composition may also include neoeriocitrin. This invention also relates to methods of using the composition, including for reducing IL-6 or MCP-1 levels, treating inflammation, and treating symptoms of metabolic syndrome.
    Type: Grant
    Filed: March 31, 2015
    Date of Patent: March 24, 2020
    Assignees: INGREDIENTS BY NATURE, THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY OF AGRICULTURE
    Inventors: Robert M. Brewster, John A. Manthey
  • Patent number: 10595551
    Abstract: Processes for the preparation of an insoluble biomass gel involving: (a) mixing ground agricultural materials and hexane to produce de-oiled agricultural materials, (b) treating the de-oiled agricultural materials with thermostable ?-amylase to produce de-oiled and de-starched agricultural materials, (c) mixing alkali with the de-oiled and de-starched agricultural materials to produce a first residue, (d) mixing hydrogen peroxide with the first residue to form a second residue, and (e) mixing the second residue in water and collecting an insoluble material which is an insoluble biomass gel.
    Type: Grant
    Filed: June 22, 2015
    Date of Patent: March 24, 2020
    Assignees: The United States of America, as represented by the Secretary of Agriculture, AgriFiber Holdings LLC
    Inventors: Madhav P. Yadav, Kevin B. Hicks, David Johnston, Kyle A. Hanah, Madhuvanti S. Kale
  • Patent number: 10595546
    Abstract: A novel method of reducing the melting point of a peptide-based biopolymer using a nitrogen-containing compound as a plasticizer is provided. The peptide-based biopolymer can be keratin or silk. The nitrogen-containing compound can be one or more amino acids or other nitrogen-containing compounds (except urea), all of which have a melting temperature above approximately 133° C., the decomposition temperature of urea. Pellets made using this novel process can be used as animal feed and soil amendments (fertilizer) to increase the adsorption of amino acids in the animal or in the soil, respectively.
    Type: Grant
    Filed: June 6, 2017
    Date of Patent: March 24, 2020
    Assignee: The United States of America, as represented by the Secretary of Agriculture
    Inventor: Walter F. Schmidt
  • Patent number: 10596601
    Abstract: The image sorting system sorts normal chicken breast meat fillets from chicken fillets that exhibit wooden breast myopathy (i.e. WB fillets). In the preferred embodiment, a camera and associated controller gather data and construct a digital image of a chicken breast fillet as it travels on a conveyer belt. The digital image is used to calculate a centroid (i.e. center of mass) of the fillet. As the fillet moves over a nose of the conveyor belt and free-falls to a lower conveyor belt, the controller determines the distance between the fillet centroid and a reference point (preferably the conveyer belt axis of rotation). If the distance exceeds a predetermined minimum distance, the fillet is designated a WB fillet.
    Type: Grant
    Filed: May 15, 2018
    Date of Patent: March 24, 2020
    Assignee: The United States of America, as represented by the Secretary of Agriculture
    Inventors: Seung C. Yoon, Brian C. Bowker, Hong Zhuang, Kurt C. Lawrence, Gerald W. Heitschmidt, Tae Sung Shin