Patents Assigned to The United States of America as represented by the Secretary of the Department of Health and Human Service
  • Patent number: 11860258
    Abstract: Methods, computing devices, and MRI systems that reduce artifacts produced by Maxwell gradient terms in TSE imaging using non-rectilinear trajectories are disclosed. With this technology, a RF excitation pulse is generated to produce transverse magnetization that generates a NMR signal and a series of RF refocusing pulses to produce a corresponding series of NMR spin-echo signals. An original encoding gradient waveform comprising a non-rectilinear trajectory is modified by adjusting a portion of the original encoding gradient waveform or introducing a zero zeroth-moment waveform segment at end(s) of the original encoding gradient waveform. During an interval adjacent to each of the series of RF refocusing pulses a first gradient pulse is generated. At least one of the first gradient pulses is generated according to the modified gradient waveform. An image is constructed from generated digitized samples of the NMR spin-echo signals obtained.
    Type: Grant
    Filed: April 28, 2022
    Date of Patent: January 2, 2024
    Assignees: UNIVERSITY OF VIRGINIA PATENT FOUNDATION, SIEMENS HEALTHCARE GMBH, THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY, DEPARTMENT OF HEALTH AND HUMAN SERVICES
    Inventors: John P. Mugler, III, Craig H. Meyer, Adrienne Campbell, Rajiv Ramasawmy, Josef Pfeuffer, Zhixing Wang, Xue Feng
  • Publication number: 20230414381
    Abstract: Disclosed are powered gait assistance systems that include a controller, sensors, and a torque applicator (motor, spring, etc.) coupled to a patient's hips, thighs, knee, lower leg, ankle, and/or foot and operable to apply assistive torque to the patient's leg joint(s) to assist the patient's volitional joint actuating muscle output during selected stages of the patient's gait cycle, such that the applied torque improves the patient's leg posture, muscle output, range of motion, and/or other parameters over the gait cycle. The sensors can include a torque sensor that measures torque applied, one or more joint angle sensors, a ground contact sensor that measures ground contact of the patient's foot, and/or other sensors. The controller can determine what stage of the patient's gait cycle the patient's leg is in based on sensor signals and cause the torque applicator to apply corresponding torque to the joint(s) based on the gait cycle stage, sensor inputs, and known patient characteristics.
    Type: Application
    Filed: September 7, 2023
    Publication date: December 28, 2023
    Applicant: The United States of America,as represented by the Secretary,Department of Health and Human Services
    Inventors: Thomas Bulea, Zachary Lerner, Diane Damiano, Andrew Gravunder
  • Patent number: 11851498
    Abstract: Polypeptides and proteins that specifically bind to and immunologically recognize CD276 are disclosed. Chimeric antigen receptors (CARs), anti-CD276 binding moieties, nucleic acids, recombinant expression vectors, host cells, populations of cells, pharmaceutical compositions, and conjugates relating to the polypeptides and proteins are also disclosed. Methods of detecting the presence of (a) cancer or (b) tumor vasculature in a mammal and methods of (a) treating or preventing cancer or (b) reducing tumor vasculature in a mammal are also disclosed.
    Type: Grant
    Filed: March 9, 2020
    Date of Patent: December 26, 2023
    Assignees: The United States of America, as represented by the Secretary, Department of Health and Human Services, BioMed Valley Discoveries, Inc.
    Inventors: Dimiter S. Dimitrov, Zhongyu Zhu, Bradley St. Croix, Steven Seaman, Saurabh Saha, Xiaoyan Michelle Zhang, Gary A. DeCrescenzo, Dean Welsch
  • Patent number: 11850236
    Abstract: The present invention concerns the use of compounds and compositions for the treatment or prevention of Flavivirus infections, such as dengue virus infections and Zika virus infections. Aspects of the invention include methods for treating or preventing Flavivirus virus infection, such as dengue virus and Zika virus infection, by administering a compound or composition of the invention, to a subject in need thereof; methods for inhibiting Flavivirus infections, such as dengue virus and Zika virus infections, in a cell in vitro or in vivo; pharmaceutical compositions; packaged dosage formulations; and kits useful for treating or preventing Flavivirus infections, such as dengue virus and Zika virus infections.
    Type: Grant
    Filed: June 28, 2022
    Date of Patent: December 26, 2023
    Assignees: The United States of America, as represented by the Secretary, Department of Health and Human Services, Florida State University Research Foundation, Inc., The Trustees of the University of Pennsylvania
    Inventors: Hengli Tang, Emily M. Lee, Wei Zheng, Ruili Huang, Miao Xu, Wenwei Huang, Khalida Shamim, Guoli Ming, Hongjun Song
  • Patent number: 11845778
    Abstract: Embodiments of a recombinant human Parainfluenza Virus (hPIV) F ectodomain trimer stabilized in a prefusion conformation are provided. Also disclosed are nucleic acids encoding the hPIV F ectodomain trimer and methods of producing the hPIV F ectodomain trimer. Methods for inducing an immune response in a subject are also disclosed. In some embodiments, the method can be a method for treating or inhibiting a hPIV infection in a subject by administering a effective amount of the recombinant hPIV F ectodomain trimer to the subject.
    Type: Grant
    Filed: July 16, 2021
    Date of Patent: December 19, 2023
    Assignees: The United States of America, as represented by the Secretary, Department of Health and Human Services, Institute for Research in Biomedicine
    Inventors: Baoshan Zhang, Guillaume Stewart-Jones, John Mascola, Kai Xu, Gwo-Yu Chuang, Li Ou, Peter Kwong, Yaroslav Tsybovsky, Wing-Pui Kong, Aliaksandr Druz, Davide Corti, Antonio Lanzavecchia
  • Patent number: 11846690
    Abstract: Multi-dimensional spectra associated with a specimen are reconstructed using lower dimensional spectra as constraints. For example, a two-dimensional spectrum associated with diffusivity and spin-lattice relaxation time is obtained using one-dimensional spectra associated with diffusivity and spin-lattice relaxation time, respectively, as constraints. Data for a full two dimensional spectrum are not acquired, leading to significantly reduced data acquisition times.
    Type: Grant
    Filed: July 13, 2022
    Date of Patent: December 19, 2023
    Assignee: The United States of America, as represented by the Secretary, Department of Health and Human Services
    Inventors: Peter J. Basser, Dan H. Benjamini
  • Patent number: 11844769
    Abstract: The present Disclosure is directed to methods for inhibiting or suppressing metastasis of a tumor in a mammalian subject using a cysteamine product, e.g., cysteamine or cystamine or a derivative thereof. Also described herein is a method for treating pancreatic cancer in a mammalian subject by administering a cysteamine product described herein.
    Type: Grant
    Filed: June 2, 2021
    Date of Patent: December 19, 2023
    Assignees: MESHABERASE, LLC, The United States of America, as Represented by the Secretary, Department of Health and Human Services
    Inventors: Benjamin Rubin, Mark Gilbert, Jinkyu Jung
  • Patent number: 11840561
    Abstract: Disclosed is an isolated or purified T cell receptor (TCR) having antigenic specificity for mutated Kirsten rat sarcoma viral oncogene homolog (KRAS) presented in the context of an HLA-Cw*0802 molecule. Related polypeptides and proteins, as well as related nucleic acids, recombinant expression vectors, host cells, populations of cells, and pharmaceutical compositions are also provided. Also disclosed are methods of detecting the presence of cancer in a mammal and methods of treating or preventing cancer in a mammal.
    Type: Grant
    Filed: December 3, 2021
    Date of Patent: December 12, 2023
    Assignee: The United States of America, as represented by the Secretary, Department of Health and Human Services
    Inventors: Eric Tran, Yong-Chen Lu, Anna Pasetto, Paul F. Robbins, Steven A. Rosenberg, Zhili Zheng
  • Patent number: 11833199
    Abstract: Isolated peptides comprising one or more antigenic sites of filovirus glycoprotein and methods of their use and production are disclosed. Nucleic acid molecules encoding the peptides are also provided. In several embodiments, the peptides can be used to induce an immune response to filovirus glycoprotein, such as Zaire ebolavirus glycoprotein, in a subject, for example, to treat or prevent infection of the subject with the virus.
    Type: Grant
    Filed: November 16, 2021
    Date of Patent: December 5, 2023
    Assignee: The United States of America, as represented by the Secretary, Department of Health and Human Services
    Inventor: Surender Khurana
  • Patent number: 11835611
    Abstract: Isotropic generalized diffusion tensor imaging methods and apparatus are configured to obtain signal attenuations using selected sets of applied magnetic field gradient directions whose averages produce mean apparent diffusion constants (mADCs) over a wide range of b-values, associated with higher order diffusion tensors (HOT). These sets are selected based on analytical descriptions of isotropic HOTs and the associated averaged signal attenuations are combined to produce mADCs, or probability density functions of intravoxel mADC distributions. Estimates of biologically-specific rotation-invariant parameters for quantifying tissue water mobilities or other tissue characteristics can be obtained such as Traces of HOTs associated with diffusion and mean t-kurtosis.
    Type: Grant
    Filed: April 6, 2018
    Date of Patent: December 5, 2023
    Assignee: The United States of America, as represented by the Secretary, Department of Health and Human Services
    Inventors: Peter J. Basser, Alexandru V. Avram
  • Patent number: 11834509
    Abstract: The invention provides a chimeric antigen receptor (CAR) comprising an antigen binding domain specific for TSLPR, a transmembrane domain, and an intracellular T cell signaling domain. Nucleic acids, recombinant expression vectors, host cells, populations of cells, antibodies, or antigen binding portions thereof, and pharmaceutical compositions relating to the CARs are disclosed. Methods of detecting the presence of a proliferative disorder, e.g., cancer, in a mammal and methods of treating or preventing a proliferative disorder, e.g., cancer, in a mammal are also disclosed.
    Type: Grant
    Filed: April 28, 2020
    Date of Patent: December 5, 2023
    Assignee: The United States of America, as represented by the Secretary, Department of Health and Human Services
    Inventors: Haiying Qin, Terry J. Fry
  • Publication number: 20230382857
    Abstract: Heptamethine cyanines for use as fluorescent markers of the biliary system are disclosed. Certain heptamethine cyanines exhibit biliary system specificity and methods for in vivo visualization of a biliary system of a subject are provided. The methods may be for diagnostic purposes and/or for visualization of biliary systems during surgery.
    Type: Application
    Filed: July 25, 2023
    Publication date: November 30, 2023
    Applicants: CHILDREN'S NATIONAL MEDICAL CENTER, THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY, DEPARTMENT OF HEALTH & HUMAN SERVICES
    Inventors: Martin John SCHNERMANN, Peter C.W. KIM, Jaepyeong CHA, Roger Rauhauser NANI
  • Publication number: 20230383278
    Abstract: The present disclosure provides adeno-associated viral vectors, recombinant adeno-associated virus (rAAV) and methods of using such vectors and viruses in gene therapy for treating methylmalonic acidemia in patients with methylmalonyl-coA mutase (MVMUT) deficiency. Also provided are pharmaceutical compositions comprising recombinant adeno-associated virus (rAAV) and a pharmaceutically acceptable carrier or excipient.
    Type: Application
    Filed: September 16, 2021
    Publication date: November 30, 2023
    Applicant: The United States of America,as represented by the Secretary,Department of Health and Human Services
    Inventors: Charles P. Venditti, Randy Chandler
  • Patent number: 11819020
    Abstract: Disclosed devices for recovering cryopreserved tissue can comprise a receptacle that receives a sealed, frozen tissue container containing cryopreserved tissue and cryopreservation media, with at least one recovery media chamber and a waste material chamber fluidly coupled to the tissue container receptacle. The recovery device can be inserted into a regulator apparatus that facilitates thawing and warming of the media and tissue, and regulation of the flow of recovery media through the tissue container to flush out the thawed cryopreservation media into the waste chamber. The regulator can identify the tissue based on an ID tag on the tissue container and automatically apply an appropriate algorithm for thawing, culturing, and maintaining the tissue in a viable state.
    Type: Grant
    Filed: January 31, 2018
    Date of Patent: November 21, 2023
    Assignee: The United States of America, as represented by the Secretary, Department of Health and Human Services
    Inventors: Vladimir Rouskov Khristov, Arvydas Miminishkis, Kapil Bharti
  • Publication number: 20230365633
    Abstract: The invention is directed to methods of treating or preventing a Rhabdoviridae virus infection in a mammal comprising administering griffithsin, or a fragment or mutant thereof, to the mammal.
    Type: Application
    Filed: October 9, 2020
    Publication date: November 16, 2023
    Applicants: The United States of America,as represented by the Secretary,Department of Health and Human Services, University of Louisville Research Foundation, Inc.
    Inventors: Nadia F. Gallardo-Romero, Barry R. O'Keefe, Kenneth E. Palmer
  • Publication number: 20230365568
    Abstract: Provided is a method of treating cancer, particularly cancers associated with an overexpression of polo-like kinase (Plk1), comprising administering a compound of formula (I) or a pharmaceutically acceptable salt thereof in which ring A, X1, X2, X3, X4, X5, R2, R3, R4, n, bond a, and bond b are described herein. Exemplary compounds of formula (I) and pharmaceutically acceptable salts thereof, especially those that selectively inhibit the polo box domain of Plk1, also are provided.
    Type: Application
    Filed: September 24, 2021
    Publication date: November 16, 2023
    Applicant: The United States of America,as represented by the Secretary,Department of Health and Human Services
    Inventors: Kyung S. Lee, Kenneth A. Jacobson, Celeste N. Alverez, Jung-Eun Park, Paola Oliva, Hobin Lee, Klara Pongorne Kirsch
  • Patent number: 11814674
    Abstract: Methods for the rapid amplification of extremely low quantity nucleic acids in a sample are provided. The disclosed methods are capable of amplifying less than 1 pg of DNA and/or RNA from a biological sample using a single tube and one-step or two-step preparation.
    Type: Grant
    Filed: February 1, 2019
    Date of Patent: November 14, 2023
    Assignee: The United States of America, as represented by the Secretary Department of Health and Human Services
    Inventor: Fei Fan Ng
  • Patent number: 11814440
    Abstract: The present disclosure is directed to antibodies binding to Glypican 2 and methods of using such antibodies to treat cancers that express or overexpress the Glypican 2 antigen.
    Type: Grant
    Filed: November 8, 2016
    Date of Patent: November 14, 2023
    Assignees: The Children's Hospital of Philadelphia, The United States of America, as Represented by the Secretary, Department of Health and Human Services
    Inventors: John M. Maris, Kristopher R. Bosse, Dimiter Dimitrov, Zhongyu Zhu, Dontcho V. Jelev
  • Patent number: 11813316
    Abstract: The invention is directed to a more efficient lentiviral vector comprising a nucleic acid sequence encoding a human ?-globin protein or a human ?-globin protein, which is oriented from 5? to 3? relative to the lentiviral genome. The invention also provides a composition and method utilizing the lentiviral vector.
    Type: Grant
    Filed: December 17, 2019
    Date of Patent: November 14, 2023
    Assignee: The United States of America, as represented by the Secretary, Department of Health and Human Services
    Inventors: Naoya Uchida, John F. Tisdale
  • Patent number: 11806406
    Abstract: The present disclosure is directed to methods and compositions for the diagnosis and/or treatment of tumors, such as ocular tumors, using virus-like particles conjugated to photosensitive molecules.
    Type: Grant
    Filed: August 5, 2021
    Date of Patent: November 7, 2023
    Assignees: Aura Biosciences, Inc., The United States of America, as represented by the Secretary, Department of Health and Human Services
    Inventors: Elisabet de los Pinos, John Todd Schiller, Rhonda C. Kines, John MacDougall