Patents Assigned to The United States of America as represented by the Secretary of the Department of Health and Human Services
  • Patent number: 11364297
    Abstract: The present disclosure relates to compositions and methods of killing cells. In particular examples, the method includes contacting a cell having a cell surface protein with a therapeutically effective amount of an antibody-IR700 molecule, wherein the antibody specifically binds to the cell surface protein, such as a tumor-specific antigen on the surface of a tumor cell. The cell is subsequently irradiated, such as at a wavelength of 660 to 740 nm at a dose of at least 1 J cm?2. The cell is also contacted with one or more therapeutic agents (such as an anti-cancer agent), for example about 0 to 8 hours after irradiating the cell, thereby killing the cell. Also provided are methods of imaging cell killing in real time, using fluorescence lifetime imaging. Also provided are wearable devices that include an article of clothing, jewelry, or covering; and an NIR LED incorporated into the article, which can be used with the disclosed methods.
    Type: Grant
    Filed: November 25, 2019
    Date of Patent: June 21, 2022
    Assignee: THE UNITED STATES OF AMERICA, as represented by the Secretary, Department of Health and Human Services
    Inventors: Hisataka Kobayashi, Peter Choyke
  • Patent number: 11357839
    Abstract: Brachyury protein can be used to induce Brachyury-specific CD4+ T cells in vivo and ex vivo. It is also disclosed that Brachyury protein can be used to stimulate the production of both Brachyury-specific CD4+ T cells and Brachyury-specific CD8+ T cells in a subject, such as a subject with cancer. In some embodiments, the methods include the administration of a Brachyury protein. In additional embodiments, the methods include the administration of a nucleic acid encoding the Brachyury protein, such as in a non-pox non-yeast vector. In further embodiments, the method include the administration of host cells expressing the Brachyury protein.
    Type: Grant
    Filed: August 21, 2018
    Date of Patent: June 14, 2022
    Assignee: The United States of America, as represented by the Secretary, Department of Health and Human Services
    Inventors: Jeffrey Schlom, Claudia M. Palena
  • Publication number: 20220177890
    Abstract: Disclosed are DNA/RNA hybrid nucleic acid nanoparticles comprising at least one trigger toehold or at least one exchange toehold, wherein each at least one trigger toehold and the at least one exchange toehold independently comprise DNA and/or RNA, and at least one single stranded RNA output strand, wherein no portion of the at least one trigger toehold hybridizes to any portion of the at least one output strand, the at least one trigger toehold is complementary and hybridizes to a first target sequence when the nanoparticle is in the presence of the first target sequence, and the nanoparticle does not contain the target sequence. Related pharmaceutical compositions, methods of treating a patient with a disease or condition, and methods of diagnosing a patient with a disease or condition are also disclosed.
    Type: Application
    Filed: April 10, 2020
    Publication date: June 9, 2022
    Applicant: The United States of America,as represented by the Secretary,Department of Health and Human Services
    Inventors: Bruce A. Shapiro, Paul J. Zakrevsky
  • Publication number: 20220178953
    Abstract: A method of assessing the risk for development of cardiovascular disease (CVD) or an inflammatory disease in a patient comprises (i) incubating a sample of body fluid with donor particles, wherein the donor particles are coated with a lipid and a first quantity of detectably labeled, non-exchangeable lipid probe (NELP); (ii) separating the detectably labeled NELP-associated HDL into a first portion and the donor particles into a second portion; (iii) measuring the second quantity of detectably labeled NELP in the first portion; (iv) determining a detectably labeled NELP efflux value for the patient; and (v) comparing the detectably labeled NELP efflux value for the patient to a reference standard. Related methods of lowering the risk for development of CVD or an inflammatory disease in a patient and methods of measuring the quantity of functional HDL in a sample of body fluid are also provided.
    Type: Application
    Filed: March 6, 2020
    Publication date: June 9, 2022
    Applicant: The United States of America,as represented by the Secretary,Department of Health and Human Services
    Inventors: Alan T. Remaley, Edward B. Neufeld, Masaki Sato
  • Patent number: 11351185
    Abstract: A pharmaceutical composition containing any one or more of 4?-O-isolvalerylspiramycin I, II and III counters tumorigenesis and reduces or prevents metastasis by inhibiting selenoprotein H to trigger genomic instability and cell-cycle arrest in cancer cells.
    Type: Grant
    Filed: March 11, 2020
    Date of Patent: June 7, 2022
    Assignees: ASCLEA CORPORATION, THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY, DEPARTMENT OF HEALTH AND HUMAN SERVICES OFFICE OF TECHNOLOGY TRANSFER, NATIONAL INSTITUTES OF HEALTH
    Inventors: Enhong Jiang, Zhengping Zhuang, Jing Cui
  • Patent number: 11352435
    Abstract: Anti-CD133 monoclonal antibodies having advantageous properties, products, compositions and kits comprising the monoclonal antibodies, methods (processes) of making the monoclonal antibodies and related compositions, as well as methods of using the monoclonal antibodies in analytical, diagnostic and therapeutic applications.
    Type: Grant
    Filed: June 12, 2020
    Date of Patent: June 7, 2022
    Assignee: The United States of America, as Represented by the Secretary, Department of Health and Human Services
    Inventors: Thomas D. Pfister, Robert J. Kinders, Tony Navas
  • Patent number: 11353454
    Abstract: Isolated peptides that include one or more antigenic sites of Zika virus (ZIKV) and methods of their use and production are disclosed. The peptides can be used, for example, to detect exposure of a subject to a flavivirus infection, such as a ZIKV infection.
    Type: Grant
    Filed: March 26, 2020
    Date of Patent: June 7, 2022
    Assignee: The United States of America, as represented by the Secretary, Department of Health and Human Services
    Inventor: Surender Khurana
  • Patent number: 11352365
    Abstract: The present invention is directed to a compound having Formula (I) and its enantiomer: wherein the definitions of n, R, X, Y and Y3, and Z are provided in the disclosure. The invention is also directed to pharmaceutical compositions of the disclosed compounds, as well as their use as opioid-like agonists in the treatment of pain.
    Type: Grant
    Filed: March 18, 2019
    Date of Patent: June 7, 2022
    Assignee: THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY, DEPARTMENT OF HEALTH AND HUMAN SERVICES
    Inventors: Kenner Cralle Rice, Arthur E. Jacobson, Fuying Li, Eugene S. Gutman, Eric W. Bow
  • Patent number: 11344615
    Abstract: Chimeric flaviviruses that include non-coding regions, non-structural proteins, a capsid (C) protein and a portion of a premembrane (prM) signal sequence from an attenuated or wild-type dengue serotype 2 virus (DENV-2), and a portion of a prM signal sequence, a prM protein and at least a portion of an envelope (E) protein from a Zika virus (ZIKV) are described. Also described are immunogenic compositions and methods for eliciting an immune response in a subject, such as an immune response directed against ZIKV.
    Type: Grant
    Filed: July 6, 2017
    Date of Patent: May 31, 2022
    Assignee: The United States of America, as represented by the Secretary, Department of Health and Human Services
    Inventor: Claire Y. H. Kinney
  • Patent number: 11340219
    Abstract: Methods and compositions are described herein for assaying the presence or absence of pY1235-MET or a fragment thereof.
    Type: Grant
    Filed: March 16, 2017
    Date of Patent: May 24, 2022
    Assignee: The United States Of America, As Represented by the Secretary, Department Of Health And Human Services
    Inventors: Apurva K. Srivastava, Thomas D. Pfister, Tony Navas, Ralph E. Parchment, James E. Doroshow
  • Patent number: 11337971
    Abstract: Disclosed herein are novel methods of treating pain in a patient in need thereof by providing to the patient a selective dopamine D3 receptor antagonist/partial agonist which when used with an opioid analgesic, can mitigate the development of opioid dependence, by preventing the need for dose escalation while either maintaining the opioid analgesic effect or providing analgesia with a lower dose of the opioid. In addition, the D3 antagonists/partial agonists described herein may be used to augment the effectiveness of current Medication Assisted Treatment regimens (e.g. methadone or buprenorphine) for the treatment of opioid use disorders.
    Type: Grant
    Filed: September 9, 2019
    Date of Patent: May 24, 2022
    Assignee: THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY, DEPARTMENT OF HEALTH AND HUMAN SERVICES
    Inventors: Amy Hauck Newman, Vivek Kumar, Anver Basha Shaik
  • Patent number: 11338033
    Abstract: Vaccines that elicit broadly protective anti-influenza antibodies. The vaccines comprise nanoparticles that display HA trimers from Group 2 influenza virus on their surface. The nanoparticles are fusion proteins comprising a monomeric subunit (e.g., ferritin) joined to stabilized stem regions of Group 2 influenza virus HA proteins. The fusion proteins self-assemble to form the HA-displaying nanoparticles. Also provided are fusion proteins, and nucleic acid molecules encoding such proteins, and assays using nanoparticles of the invention to detect anti-influenza antibodies.
    Type: Grant
    Filed: September 1, 2017
    Date of Patent: May 24, 2022
    Assignee: The United States of America, as represented by the Secretary, Department of Health and Human Services
    Inventors: Jeffrey C. Boyington, Barney S. Graham, John R. Mascola, Hadi M. Yassine, Kizzmekia S. Corbett, Syed M. Moin, Lingshu Wang, Masaru Kanekiyo
  • Patent number: 11339198
    Abstract: The present invention provides for nucleic acids improved for the expression of interleukin-15 (IL-15) in mammalian cells. The invention further provides for methods of expressing IL-15 in mammalian cells by transfecting the cell with a nucleic acid sequence encoding an improved IL-15 sequence. The present invention further provides expression vectors, and IL-15 and IL 15 receptor alpha combinations (nucleic acid and protein) that increase IL-15 stability and potency in vitro and in vivo. The present methods are useful for the increased bioavailability and biological effects of IL-15 after DNA, RNA or protein administration in a subject (e.g. a mammal, a human).
    Type: Grant
    Filed: August 21, 2019
    Date of Patent: May 24, 2022
    Assignee: THE UNITED STATES OF AMERICA, AS REPRESENTED BY, THE SECRETARY, DEPARTMENT OF HEALTH AND HUMAN SERVICES
    Inventors: Barbara K. Felber, George N. Pavlakis
  • Patent number: 11337988
    Abstract: Embodiments of a method for inhibiting viral infection in a subject are provided herein. In some embodiments, the method comprises administration of a competitive antagonist of ouabain binding to ATP1A1 to inhibit respiratory syncytial virus infection in the subject.
    Type: Grant
    Filed: September 26, 2019
    Date of Patent: May 24, 2022
    Assignee: The United States of America, as represented by the Secretary, Department of Health and Human Services
    Inventors: Peter Collins, Matthias Lingemann, Shirin Munir
  • Publication number: 20220153838
    Abstract: The invention is directed to a chimeric antigen receptor (CAR) directed against CD19, which comprises an amino acid sequence of any one of SEQ ID NO: 1-SEQ ID NO: 13. The invention also provides T-cells expressing the CAR and methods for destroying malignant B-cells.
    Type: Application
    Filed: December 21, 2021
    Publication date: May 19, 2022
    Applicant: The United States of America,as represented by the Secretary,Department of Health and Human Services
    Inventor: James N. Kochenderfer
  • Patent number: 11331385
    Abstract: Disclosed are methods of preparing an isolated population of human papillomavirus (HPV)-specific T cells comprise dividing an HPV-positive tumor sample into multiple fragments; separately culturing the multiple fragments; obtaining T cells from the cultured multiple fragments; testing the T cells for specific autologous HPV-positive tumor recognition; selecting the T cells that exhibit specific autologous HPV-positive tumor recognition; and expanding the number of selected T cells to produce a population of HPV-specific T cells for adoptive cell therapy. Related methods of treating or preventing cancer using the T cells are also disclosed.
    Type: Grant
    Filed: July 12, 2021
    Date of Patent: May 17, 2022
    Assignee: The United States of America, as represented by the Secretary, Department of Health and Human Services
    Inventors: Christian S. Hinrichs, Steven A. Rosenberg
  • Patent number: 11332722
    Abstract: The invention is related to a dengue virus or chimeric dengue virus that contains a mutation in the 3? untranslated region (3?-UTR) comprising a ?30 mutation that removes the TL-2 homologous structure in each of the dengue virus serotypes 1, 2, 3, and 4, and nucleotides additional to the ?30 mutation deleted from the 3?-UTR that removes sequence in the 5? direction as far as the 5? boundary of the TL-3 homologous structure in each of the dengue serotypes 1, 2, 3, and 4, or a replacement of the 3?-UTR of a dengue virus of a first serotype with the 3?-UTR of a dengue virus of a second serotype, optionally containing the ?30 mutation and nucleotides additional to the ?30 mutation deleted from the 3?-UTR; and immunogenic compositions, methods of inducing an immune response, and methods of producing a dengue virus or chimeric dengue virus.
    Type: Grant
    Filed: June 25, 2020
    Date of Patent: May 17, 2022
    Assignee: The Government of The United States of America, as represented by the Secretary, Department of Health and Human Services
    Inventors: Stephen S. Whitehead, Joseph E. Blaney, Brian R. Murphy, Ching-Juh Lai
  • Patent number: 11332721
    Abstract: Provided herein are novel recombinant respiratory syncytial viruses (RSV) having an attenuated phenotype that contain mutations in the M2-2 open reading frame that interfere with the expression of the M2-2 protein. The M2-2 mutations may be present in combination with mutations at other loci. Using methods described herein, combinations of mutations are provided to achieve desired levels of attenuation. The recombinant RSV strains described here are suitable for use as live-attenuated RSV vaccines. Also provided are polynucleotide sequences of the described viruses, as well as methods for producing and using the viruses.
    Type: Grant
    Filed: May 18, 2020
    Date of Patent: May 17, 2022
    Assignee: THE UNITED STATES OF AMERICA, as represented by the Secretary, Department of Health and Human Services
    Inventors: Peter L. Collins, Ursula J. Buchholz, Cindy Luongo
  • Publication number: 20220144921
    Abstract: The present disclosure relates to polypeptides that specifically bind to Dengue virus non-structural protein 1, including antibodies and fragments thereof. The antibody or antigen-binding fragment thereof may specifically bind Dengue virus (DENV) serotype 4 and include: a heavy chain variable region that comprises at least one CDR amino acid sequence selected from the group consisting of: SGYNWH, YIHYSGGTNYNPSLKS, RTGTVPFAY, SYVMH, YLNPYNDDTKYNEKFKG, and GPPYALDY. The present disclosure further relates to methods of producing the polypeptides of the present disclosure, methods of diagnosing DENV, and methods of treating a DENV infection.
    Type: Application
    Filed: January 25, 2022
    Publication date: May 12, 2022
    Applicant: The United States of America, as represented by the Secretary, Department of Health & Human Services
    Inventors: Elizabeth Anne HUNSPERGER, Tesfaye Gelanew Taye
  • Patent number: 11324725
    Abstract: Pharmaceutical compositions comprising a molecular inhibitor of Npr1 are disclosed. Also disclosed are methods of treating, reducing, or preventing acute and/or chronic pruritus in a mammal comprising administering a pharmaceutical composition comprising a molecular inhibitor of Npr1.
    Type: Grant
    Filed: November 2, 2018
    Date of Patent: May 10, 2022
    Assignee: The United States of America, as represented by the Secretary, Department of Health and Human Services
    Inventors: Mark A. Hoon, Hans Juergen Solinski, James Inglese, Patricia Dranchak