Patents Assigned to The United States of America as represented by the United States Department of Energy
  • Patent number: 6682870
    Abstract: The present invention is an improvement on the LIGA microfabrication process wherein a buffer layer is applied to the upper or working surface of a substrate prior to the placement of a resist onto the surface of the substrate. The buffer layer is made from an inert low-Z material (low atomic weight), a material that absorbs secondary X-rays emissions from the substrate that are generated from the substrate upon exposure to a primary X-rays source. Suitable materials for the buffer layer include polyamides and polyimide. The preferred polyimide is synthesized form pyromellitic anhydride and oxydianiline (PMDA-ODA).
    Type: Grant
    Filed: August 10, 2001
    Date of Patent: January 27, 2004
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Sateesh S. Bajikar, Francesco De Carlo, Joshua J. Song
  • Patent number: 6681938
    Abstract: A process for separating organic and inorganic particles from a dry mixture by sizing the particles into isolated fractions, contacting the sized particles to a charged substrate and subjecting the charged particles to an electric field to separate the particles.
    Type: Grant
    Filed: June 12, 2001
    Date of Patent: January 27, 2004
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Thomas A. Link, Micael R. Schoffstall, Yee Soong
  • Patent number: 6678351
    Abstract: A method of imaging an object by generating laser pulses with a short-pulse, high-power laser. When the laser pulse strikes a conductive target, bremsstrahlung radiation is generated such that hard ballistic high-energy electrons are formed to penetrate an object. A detector on the opposite side of the object detects these electrons. Since laser pulses are used to form the hard x-rays, multiple pulses can be used to image an object in motion, such as an exploding or compressing object, by using time gated detectors. Furthermore, the laser pulses can be directed down different tubes using mirrors and filters so that each laser pulse will image a different portion of the object.
    Type: Grant
    Filed: May 4, 2000
    Date of Patent: January 13, 2004
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Michael D. Perry, Joseph A. Sefcik
  • Patent number: 6672725
    Abstract: An optical apparatus for clearly viewing the interior of a containment vessel by applying a transpiration fluid to a volume directly in front of the external surface of the optical element of the optical apparatus. The fluid is provided by an external source and transported by means of an annular tube to a capped end region where the inner tube is perforated. The perforation allows the fluid to stream axially towards the center of the inner tube and then axially away from an optical element which is positioned in the inner tube just prior to the porous sleeve. This arrangement draws any contaminants away from the optical element keeping it free of contaminants. In one of several embodiments, the optical element can be a lens, a viewing port or a laser, and the external source can provide a transpiration fluid having either steady properties or time varying properties.
    Type: Grant
    Filed: January 9, 2002
    Date of Patent: January 6, 2004
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: John VanOsdol, Steven Woodruff
  • Patent number: 6670608
    Abstract: The present invention relates generally to a gas sampling system, and specifically to a gas sampling system for transporting a hazardous process gas to a remotely located mass spectrometer. The gas sampling system includes a capillary tube having a predetermined capillary length and capillary diameter in communication with the supply of process gas and the mass spectrometer, a flexible tube surrounding and coaxial with the capillary tube intermediate the supply of process gas and the mass spectrometer, a heat transfer tube surrounding and coaxial with the capillary tube, and a heating device in communication the heat transfer tube for substantially preventing condensation of the process gas within the capillary tube.
    Type: Grant
    Filed: September 13, 2001
    Date of Patent: December 30, 2003
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Charles E. Taylor, Edward P. Ladner
  • Patent number: 6667261
    Abstract: An open-cell glass crystalline porous material made from hollow microspheres which are cenospheres obtained from fly ash, having an open-cell porosity of up to 90 vol. % is produced. The cenospheres are separated into fractions based on one or more of grain size, density, magnetic or non-magnetic, and perforated or non-perforated. Selected fractions are molded and agglomerated by sintering with a binder at a temperature below the softening temperature, or without a binder at a temperature about, or above, the softening temperature but below the temperature of liquidity. The porous material produced has an apparent density of 0.3-0.6 g/cm3, a compressive strength in the range of 1.2-3.5 MPa, and two types of openings: through-flow wall pores in the cenospheres of 0.1-30 micrometers, and interglobular voids between the cenospheres of 20-100 micrometers.
    Type: Grant
    Filed: May 15, 2002
    Date of Patent: December 23, 2003
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Alexander G. Anshits, Olga M. Sharonova, Tatiana A. Vereshchagina, Irina D. Zykova, Yurii A. Revenko, Alexander A. Tretyakov, Albert S. Aloy, Rem I. Lubtsev, Dieter A. Knecht, Troy J. Tranter, Yevgeny Macheret
  • Patent number: 6648949
    Abstract: A novel stack application for improved carbon dioxide and particle removal/collection from flue gases produced during coal power-generation processes. Flue gas tangential inlet velocity is increased to subject upward-flowing flue gas in a stack to a centrifugal force, thereby propelling entrained solid particles and CO2 in the flue gas to the stack wall for collection. Collection efficiency is further improved by a cascading water film or algae-laden water film on the inside of the stack wall and on surfaces of an optional internally mounted vortex generator to eliminate the re-entrainment of small particles and for ease of transporting the captured particles in a slurry. The stack can also be utilized as a photochemical or a biological reactor to promote a photosynthesis reaction between carbon dioxide and algae-laden water to form carbohydrate substrates for carbon dioxide sequestration and utilization.
    Type: Grant
    Filed: November 28, 2001
    Date of Patent: November 18, 2003
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Victor K. Der, Jer-Yu Shang
  • Patent number: 6649055
    Abstract: A pump station for transferring radioactive particle containing waste water, includes: (a.) an enclosed sump having a vertically elongated right frusto conical wall surface and a bottom surface and (b.) a submersible volute centrifugal pump having a horizontally rotating impeller and a volute exterior surface. The sump interior surface, the bottom surface and the volute exterior surface are made of stainless steel having a 30 Ra or finer surface finish. A 15 Ra finish has been found to be most cost effective. The pump station is used for transferring waste water, without accumulation of radioactive fines.
    Type: Grant
    Filed: May 7, 2002
    Date of Patent: November 18, 2003
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: John P. Whitton, Dean M. Klos, Danny T. Carrara, John J. Minno
  • Patent number: 6646222
    Abstract: A method of electron beam welding a copper work piece to a stainless steel work piece is disclosed. In a continuous path on the work pieces, an electron beam is first directed on the stainless steel work piece. The electron beam is then moved across the interface to the copper work piece. The electron beam is then moved on the copper work piece in a path essentially parallel to the interface between the two work pieces at a specified distance from the interface. The electron beam is then moved across the interface to the stainless steel work piece and then terminated. The result is a high quality weld at the interface. The method is used for making a high quality weld on an electrical conductor such as a busbar.
    Type: Grant
    Filed: February 14, 2002
    Date of Patent: November 11, 2003
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventor: Richard Ray Burlingame
  • Patent number: 6635375
    Abstract: A solid oxide fuel cell arrangement and method of use that provides internal preheating of both fuel and air in order to maintain the optimum operating temperature for the production of energy. The internal preheat passes are created by the addition of two plates, one on either side of the bipolar plate, such that these plates create additional passes through the fuel cell. This internal preheat fuel cell configuration and method reduce the requirements for external heat exchanger units and air compressors. Air or fuel may be added to the fuel cell as required to maintain the optimum operating temperature through a cathode control valve or an anode control valve, respectively. A control loop comprises a temperature sensing means within the preheat air and fuel passes, a means to compare the measured temperature to a set point temperature and a determination based on the comparison as to whether the control valves should allow additional air or fuel into the preheat or bypass manifolds of the fuel cell.
    Type: Grant
    Filed: May 29, 2001
    Date of Patent: October 21, 2003
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Rodney A. Geisbrecht, Mark C. Williams
  • Patent number: 6632258
    Abstract: Coal beneficiation is achieved by suspending coal fines in a colloidal suspension of microscopic gas bubbles in water under atmospheric conditions to form small agglomerates of the fines adhered by the gas bubbles. The agglomerates are separated, recovered and resuspended in water. Thereafter, the pressure on the suspension is increased above atmospheric to deagglomerate, since the gas bubbles are then re-dissolved in the water. During the deagglomeration step, the mineral matter is dispersed, and when the pressure is released, the coal portion of the deagglomerated gas-saturated water mixture reagglomerates, with the small bubbles now coming out of the solution. The reagglomerate can then be separated to provide purified coal fines without the mineral matter.
    Type: Grant
    Filed: March 17, 2000
    Date of Patent: October 14, 2003
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Thomas D. Wheelock, Shen Meiyu
  • Patent number: 6630116
    Abstract: An apparatus and method for decomposing NH3. A fluid containing NH3 is passed in contact with a tubular membrane that is a homogeneous mixture of a ceramic and a first metal, with the ceramic being selected from one or more of a cerate having the formula of M′Ce1-x M″3-&dgr;, zirconates having the formula M′Zr1-xM″O3-&dgr;, stannates having the formula M′Sn1-xM′O3-&dgr;, where M′ is a group IIA metal, M″ is a dopant metal of one or more of Ca, Y, Yb, In, Nd, Gd or mixtures thereof and &dgr; is a variable depending on the concentration of dopant and is in the range of from 0.001 to 0.5, the first metal is a group VIII or group IB element selected from the group consisting of Pt, Ag, Pd, Fe, Co, Cr, Mn, V, Ni, Au, Cu, Rh, Ru and mixtures thereof. The tubular membrane has a catalytic metal on the side thereof in contact with the fluid containing NH3 which is effective to cause NH3 to decompose to N2 and H2.
    Type: Grant
    Filed: July 25, 2001
    Date of Patent: October 7, 2003
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Uthamalinga Balachandran, Arun C. Bose
  • Patent number: 6630105
    Abstract: An apparatus and method for decontaminating chemical and biological agents using the reactive properties of both the single atomic oxygen and the hydroxyl radical for the decontamination of chemical and biological agents. The apparatus is self contained and portable and allows for the application of gas reactants directly at the required decontamination point. The system provides for the use of ultraviolet light of a specific spectral range to photolytically break down ozone into molecular oxygen and hydroxyl radicals where some of the molecular oxygen is in the first excited state. The excited molecular oxygen will combine with water vapor to produce two hydroxyl radicals.
    Type: Grant
    Filed: September 27, 2000
    Date of Patent: October 7, 2003
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Hugh J. O'Neill, Kenneth L. Brubaker
  • Patent number: 6630668
    Abstract: This invention relates to a remote control system which through gear motors coupled to the scanning electron microscope (SEM) manual control knobs readily permits remote adjustments as necessary.
    Type: Grant
    Filed: October 4, 2001
    Date of Patent: October 7, 2003
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Charles E. Cramer, Robert J. Campchero
  • Patent number: 6620763
    Abstract: This process produces a sorbent for use in desulfurization of coal gas. A zinc titanate compound and a metal oxide are mixed by milling the compounds in an aqueous medium, the resulting mixture is dried and then calcined, crushed, sleved and formed into pellets for use in a moving-bed reactor. Metal oxides suitable for use as an additive in this process include: magnesium oxide, magnesium oxide plus molybdenum oxide, calcium oxide, yttrium oxide, hafnium oxide, zirconium oxide, cupric oxide, and tin oxide. The resulting sorbent has a percentage of the original zinc or titanium ions substituted for the oxide metal of the chosen additive.
    Type: Grant
    Filed: May 10, 2001
    Date of Patent: September 16, 2003
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Venkat S. Venkataramani, Raul E. Ayala
  • Patent number: 6613427
    Abstract: The present invention is a method for applying a high emissivity graphite powder coating to a variety of various substrates. The method employs a mixture consisting substantially of 75 % of a solution of colloidal carbon in isopropanol and 25 % of butyl alcohol as a bonding agent. First, a first layer of the mixture is applied to a surface of the substrate. After the surface of the substrate dries, a second layer of the mixture is applied to the surface of the substrate. Then a layer of a graphite powder is applied to the substrate over the second layer of the mixture while it is still wet. The method provides the surface of the substrate with high emissivity (&egr;>0.9) and low reflectance characteristics that may be exposed to high temperatures.
    Type: Grant
    Filed: October 4, 2001
    Date of Patent: September 2, 2003
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Edward F. Morrison, Larry P. Rice
  • Patent number: 6599490
    Abstract: An improved radiation shielding material and storage systems for radioactive materials incorporating the same. The PYRolytic Uranium Compound (“PYRUC”) shielding material is preferably formed by heat and/or pressure treatment of a precursor material comprising microspheres of a uranium compound, such as uranium dioxide or uranium carbide, and a suitable binder. The PYRUC shielding material provides improved radiation shielding, thermal characteristic, cost and ease of use in comparison with other shielding materials. The shielding material can be used to form containment systems, container vessels, shielding structures, and containment storage areas, all of which can be used to house radioactive waste. The preferred shielding system is in the form of a container for storage, transportation, and disposal of radioactive waste. In addition, improved methods for preparing uranium dioxide and uranium carbide microspheres for use in the radiation shielding materials are also provided.
    Type: Grant
    Filed: April 15, 2002
    Date of Patent: July 29, 2003
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Steven M. Mirsky, Stephen J. Krill, Jr., Alexander P. Murray
  • Patent number: 6597709
    Abstract: A method and apparatus are provided for aligning the facets of a solar concentrator. A first laser directs a first laser beam onto a selected facet of the concentrator such that a target board positioned adjacent to the first laser at approximately one focal length behind the focal point of the concentrator is illuminated by the beam after reflection thereof off of the selected facet. A second laser, located adjacent to the vertex of the optical axis of the concentrator, is used to direct a second laser beam onto the target board at a target point thereon. By adjusting the selected facet to cause the first beam to illuminate the target point on the target board produced by the second beam, the selected facet can be brought into alignment with the target point. These steps are repeated for other selected facets of the concentrator, as necessary, to provide overall alignment of the concentrator.
    Type: Grant
    Filed: October 5, 2000
    Date of Patent: July 22, 2003
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventor: Richard Boyer Diver, Jr.
  • Patent number: 6596994
    Abstract: An apparatus for determining the position of an x-ray beam relative to a desired beam axis. Where the apparatus is positioned along the beam path so that a thin metal foil target intersects the x-ray beam generating fluorescent radiation. A PIN diode array is positioned so that a portion of the fluorescent radiation is intercepted by the array resulting in an a series of electrical signals from the PIN diodes making up the array. The signals are then analyzed and the position of the x-ray beam is determined relative to the desired beam path.
    Type: Grant
    Filed: September 21, 2000
    Date of Patent: July 22, 2003
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Randy W. Alkire, Gerold Rosenbaum, Gwyndaf Evans
  • Patent number: 6590954
    Abstract: An x-ray interferometer for analyzing high density plasmas and optically opaque materials includes a point-like x-ray source for providing a broadband x-ray source. The x-rays are directed through a target material and then are reflected by a high-quality ellipsoidally-bent imaging crystal to a diffraction grating disposed at 1× magnification. A spherically-bent imaging crystal is employed when the x-rays that are incident on the crystal surface are normal to that surface. The diffraction grating produces multiple beams which interfere with one another to produce an interference pattern which contains information about the target. A detector is disposed at the position of the image of the target produced by the interfering beams.
    Type: Grant
    Filed: June 20, 2002
    Date of Patent: July 8, 2003
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventor: Jeffrey A. Koch