Patents Assigned to The University of British Columbia
  • Patent number: 10876186
    Abstract: This application pertains to methods of recovering metals from metal sulfides that involve contacting the metal sulfide with an acidic sulfate solution containing ferric sulfate and a reagent that has a thiocarbonyl functional group, wherein the concentration of reagent in the acidic sulfate solution is sufficient to increase the rate of metal ion extraction relative to an acidic sulfate solution that does not contain the reagent, to produce a pregnant solution containing the metal ions.
    Type: Grant
    Filed: January 15, 2020
    Date of Patent: December 29, 2020
    Assignee: The University of British Columbia
    Inventors: David Dixon, Edouard Asselin, Zihe Ren
  • Patent number: 10876187
    Abstract: This application pertains to methods of recovering metals from metal sulfides that involve contacting the metal sulfide with an acidic sulfate solution containing ferric sulfate and a reagent that has a thiocarbonyl functional group, wherein the concentration of reagent in the acidic sulfate solution is sufficient to increase the rate of metal ion extraction relative to an acidic sulfate solution that does not contain the reagent, to produce a pregnant solution containing the metal ions.
    Type: Grant
    Filed: January 15, 2020
    Date of Patent: December 29, 2020
    Assignee: The University of British Columbia
    Inventors: David Dixon, Edouard Asselin, Zihe Ren
  • Patent number: 10870903
    Abstract: This application pertains to methods of recovering metals from metal sulfides that involve contacting the metal sulfide with an acidic sulfate solution containing ferric sulfate and a reagent that has a thiocarbonyl functional group, wherein the concentration of reagent in the acidic sulfate solution is sufficient to increase the rate of metal ion extraction relative to an acidic sulfate solution that does not contain the reagent, to produce a pregnant solution containing the metal ions.
    Type: Grant
    Filed: January 15, 2020
    Date of Patent: December 22, 2020
    Assignee: The University of British Columbia
    Inventors: David Dixon, Edouard Asselin, Zihe Ren
  • Patent number: 10865811
    Abstract: Compositions and methods of preparation and use are provided for an engineered tissue substitute system comprising collagen, glycosaminoglycan and hydrogel in a cross-linked matrix. The compositions may be further lyophilized and reconstituted with a physiological fluid prior to use in methods, such as in the treatment of wounds, tissue engineering and cell transplantation.
    Type: Grant
    Filed: February 3, 2016
    Date of Patent: December 15, 2020
    Assignee: The University of British Columbia
    Inventors: Aziz Ghahary, Ryan Hartwell
  • Patent number: 10865460
    Abstract: This application pertains to methods of recovering metals from metal sulfides that involve contacting the metal sulfide with an acidic sulfate solution containing ferric sulfate and a reagent that has a thiocarbonyl functional group, wherein the concentration of reagent in the acidic sulfate solution is sufficient to increase the rate of metal ion extraction relative to an acidic sulfate solution that does not contain the reagent, to produce a pregnant solution containing the metal ions.
    Type: Grant
    Filed: January 15, 2020
    Date of Patent: December 15, 2020
    Assignee: The University of British Columbia
    Inventors: David Dixon, Edouard Asselin, Zihe Ren
  • Publication number: 20200377946
    Abstract: Disclosed herein are antisense compounds and methods for selectively reducing expression of an allelic variant of a huntingtin gene containing a single nucleotide polymorphism (SNP). Such methods, compounds, and composition are useful to treat, prevent, or ameliorate Huntington's Disease (HD).
    Type: Application
    Filed: January 14, 2020
    Publication date: December 3, 2020
    Applicants: Ionis Pharmaceuticals, Inc., The University of British Columbia
    Inventors: C. Frank Bennett, Michael Hayden, Susan M. Freier, Sarah Greenlee, Jeffrey Carroll, Simon Warby, Eric E. Swayze
  • Patent number: 10843194
    Abstract: Limit size lipid nanoparticles, methods for using the lipid nanoparticles, and methods and systems for making limit size lipid nanoparticles.
    Type: Grant
    Filed: March 21, 2018
    Date of Patent: November 24, 2020
    Assignee: The University of British Columbia
    Inventors: Pieter R. Cullis, Igor V. Jigaltsev, Robert James Taylor, Timothy Leaver, Andre Wild, Nathan Maurice Belliveau
  • Publication number: 20200363401
    Abstract: Methods and devices are provided herein for identifying a cell population comprising an effector cell that exerts an extracellular effect. In one embodiment the method comprises retaining in a microreactor a cell population comprising one or more effector cells, wherein the contents of the microreactor further comprise a readout particle population comprising one or more readout particles, incubating the cell population and the readout particle population within the microreactor, assaying the cell population for the presence of the extracellular effect, wherein the readout particle population or subpopulation thereof provides a direct or indirect readout of the extracellular effect, and determining, based on the results of the assaying step, whether one or more effector cells within the cell population exerts the extracellular effect on the readout particle. If an extracellular effect is measured, the cell population is recovered for further analysis to determine the cell or cells responsible for the effect.
    Type: Application
    Filed: July 16, 2020
    Publication date: November 19, 2020
    Applicant: The University of British Columbia
    Inventors: Marketa RICICOVA, Kevin Albert HEYRIES, Hans ZAHN, Oleh PETRIV, Veronique LECAULT, Anupam Singhal, Daniel J. Da Costa, Carl L. G. Hansen, Brad NELSON, Julie NIELSEN, Kathleen Lisaingo
  • Patent number: 10835878
    Abstract: Disclosed herein are fluidic mixers having bifurcated fluidic flow through toroidal mixing elements. The mixers operate, at least partially, by Dean vortexing. Accordingly, the mixers are referred to as Dean Vortex Bifurcating Mixers (“DVBM”). The DVBM utilize Dean vortexing and asymmetric bifurcation of the fluidic channels that form the mixers to achieve the goal of optimized microfluidic mixing. The disclosed DVBM mixers can be incorporated into any fluidic (e.g., microfluidic) device known to those of skill in the art where mixing two or more fluids is desired. The disclosed mixers can be combined with any fluidic elements known to those of skill in the art, including syringes, pumps, inlets, outlets, non-DVBM mixers, heaters, assays, detectors, and the like.
    Type: Grant
    Filed: May 14, 2020
    Date of Patent: November 17, 2020
    Assignee: The University of British Columbia
    Inventors: Andre Wild, Timothy Leaver, Robert James Taylor
  • Patent number: 10829394
    Abstract: A UV reactor irradiates a flow of fluid with UV radiation. The reactor comprises: a fluid conduit defined by a heat conducting conduit body comprising one or more heat conducting walls for permitting a flow of fluid therethrough; a UV-LED operatively connected to a PCB and oriented for directing radiation into the fluid conduit. The PCB comprises a heat conducting substrate having a first surface. The conduit body is in thermal contact with the first surface of the heat conducting substrate. Heat is dissipated from the UV-LED via the heat conducting substrate, the thermal contact between the first surface of the heat conducting substrate and the heat conducting conduit body, and from the one or more heat conducting walls of the heat conducting conduit body to the fluid flowing through the fluid conduit.
    Type: Grant
    Filed: January 19, 2017
    Date of Patent: November 10, 2020
    Assignee: The University of British Columbia
    Inventor: Fariborz Taghipour
  • Patent number: 10829800
    Abstract: Methods and apparatus for separating, concentrating and/or detecting molecules based on differences in binding affinity to a probe are provided. The molecules may be differentially modified. The molecules may be differentially methylated nucleic acids. The methods can be used in fields such as epigenetics or oncology to selectively concentrate or detect the presence of specific biomolecules or differentially modified biomolecules, to provide diagnostics for disorders such as fetal genetic disorders, to detect biomarkers in cancer, organ failure, disease states, infection or the like.
    Type: Grant
    Filed: July 17, 2019
    Date of Patent: November 10, 2020
    Assignee: The University of British Columbia
    Inventors: Andrea Marziali, Joel Pel, Jason Donald Thompson, Gosuke Shibahara
  • Patent number: 10831319
    Abstract: A sensor for detecting and distinguishing between increasing and decreasing proximity of a pointing element, touch by a pointing element, pressure applied by a pointing element, stretching (and/or other deformation) of the sensor, and any of the above while stretching and/or otherwise deforming the sensor. The sensor may comprise a cluster sensor unit having a first sensor and a second sensor wherein the first sensor has a higher ratio of distal flux to proximate flux as compared to the second sensor. With this flux characteristic, the first sensor is relatively more sensitive (as compared to the second sensor) to proximity of a pointing element, while the second sensor is relatively more sensitive (as compared to the first sensor) to force and/or pressure applied by the pointing element.
    Type: Grant
    Filed: February 9, 2018
    Date of Patent: November 10, 2020
    Assignee: The University of British Columbia
    Inventors: John D. W. Madden, Mirza S. Sarwar
  • Publication number: 20200348302
    Abstract: There are provided methods, and devices for assaying for a binding interaction between a protein, such as a monoclonal antibody, produced by a cell, and a biomolecule. The method may include retaining the cell within a chamber having an aperture; exposing the protein produced by the cell to a capture substrate, wherein the capture substrate is in fluid communication with the protein produced by the cell and wherein the capture substrate is operable to bind the protein produced by the cell; flowing a fluid volume comprising the biomolecule through the chamber via said aperture, wherein the fluid volume is in fluid communication with the capture substrate; and determining a binding interaction between the protein produced by the cell and the biomolecule.
    Type: Application
    Filed: June 25, 2020
    Publication date: November 5, 2020
    Applicant: The University of British Columbia
    Inventors: Anupam Singhal, Carl L. G. Hansen, John W. Schrader, Charles A. Haynes, Daniel J. Da Costa
  • Publication number: 20200339625
    Abstract: This application relates to compounds of Formula (I-a) or Formula (I-b), or is salts or solvates thereof. R1 is —(CH2)5CH3 or comprises 2-4 fused benzene rings. R2 is I, Br, F, Cl, H, OH, OCH3, NH2, NO2 or CH3. R3 is a peptide-bonded glycine, aspartate or glutamate or is glutamate peptide bonded through Cdelta. L is —CH2NH—, —(CH2)2NH—, —(CH2)3NH—, or —(CH2)4NH—. R4 is a radiometal chelator optionally bound by a radiometal. Variable ‘n’ is 1-3. The compounds may be useful for imaging prostate specific membrane antigen (PSMA)-expressing tissues or for treating PSMA-expressing diseases (e.g. cancer).
    Type: Application
    Filed: October 22, 2018
    Publication date: October 29, 2020
    Applicants: Provincial Health Services Authority, The University of British Columbia
    Inventors: Kuo-Shyan Lin, Frangois Benard, Hsiou-Ting Kuo, Zhengxing Zhang
  • Patent number: 10819205
    Abstract: Aspects of the invention provide methods and systems for moving a plurality of moveable stages relative to a stator. The stator comprises a plurality of coils shaped to provide pluralities of coil trace groups where each coil trace group comprises a corresponding plurality of generally linearly elongated coil traces which extend across a stator tile. Each moveable stage comprises a plurality of magnet arrays. Methods and apparatus are provided for moving the moveable stages relative to the stator, where a magnet array from a first moveable stage and a magnet array from a second moveable stage both overlap a shared group of coil traces. For at least a portion of the time that the magnet arrays from the first and second moveable stages overlap the shared group of coil traces, currents are controllably driven in the shared coil trace group based on the positions of both the first and second moveable stages. The positions of the first and second moveable stages may be ascertained by feedback.
    Type: Grant
    Filed: May 31, 2019
    Date of Patent: October 27, 2020
    Assignee: The University of British Columbia
    Inventor: Xiaodong Lu
  • Publication number: 20200332357
    Abstract: Methods, devices and systems for analyzing precious samples of cells, including single cells are provided. The methods, devices, and systems in various embodiments of the invention are used to assess genomic heterogeneity, which has been recognized as a central feature of many cancers and plays a critical role in disease initiation, progression, and response to treatment. The methods devices and systems are also used to analyze embryonic biopsies for preimplantation genetic diagnosis (PGD). In one embodiment, the devices, systems and methods provided herein allow for the construction of genomic and RNA-seq libraries without a pre-amplification step.
    Type: Application
    Filed: April 16, 2020
    Publication date: October 22, 2020
    Applicant: THE UNIVERSITY OF BRITISH COLUMBIA
    Inventors: Carl Lars Genghis Hansen, Hans Zahn, Jens Huft, Marinus Theodorus Johannes Van Loenhout, Kaston Leung, Bill Kengli Lin, Anders Klaus, Samuel Alves Jana Rodrigues Aparicio, Sohrab Prakash Shah, Adi Steif
  • Publication number: 20200326341
    Abstract: There are provided methods, and devices for assaying for a binding interaction between a protein, such as a monoclonal antibody, produced by a cell, and a biomolecule. The method may include retaining the cell within a chamber having an aperture; exposing the protein produced by the cell to a capture substrate, wherein the capture substrate is in fluid communication with the protein produced by the cell and wherein the capture substrate is operable to bind the protein produced by the cell; flowing a fluid volume comprising the biomolecule through the chamber via said aperture, wherein the fluid volume is in fluid communication with the capture substrate; and determining a binding interaction between the protein produced by the cell and the biomolecule.
    Type: Application
    Filed: June 25, 2020
    Publication date: October 15, 2020
    Applicant: The University of British Columbia
    Inventors: Anupam Singhal, Carl L. G. Hansen, John W. Schrader, Charles A. Haynes, Daniel J. Da Costa
  • Publication number: 20200325431
    Abstract: Microfluidic devices and methods for perfusing a cell with perfusion fluid are provided herein, wherein the gravitational forces acting on the cell to keep the cell at or near a retainer or a retaining position exceed the hydrodynamic forces acting on the cell to move it toward an outlet. Also provided, are methods for assaying cell products within the microfluidic device.
    Type: Application
    Filed: June 10, 2020
    Publication date: October 15, 2020
    Applicant: The University of British Columbia
    Inventors: Carl L. G. Hansen, Veronique LECAULT, James M. PIRET, Anupam Singhal
  • Publication number: 20200326342
    Abstract: There are provided methods, and devices for assaying for a binding interaction between a protein, such as a monoclonal antibody, produced by a cell, and a biomolecule. The method may include retaining the cell within a chamber having an aperture; exposing the protein produced by the cell to a capture substrate, wherein the capture substrate is in fluid communication with the protein produced by the cell and wherein the capture substrate is operable to bind the protein produced by the cell; flowing a fluid volume comprising the biomolecule through the chamber via said aperture, wherein the fluid volume is in fluid communication with the capture substrate; and determining a binding interaction between the protein produced by the cell and the biomolecule.
    Type: Application
    Filed: June 25, 2020
    Publication date: October 15, 2020
    Applicant: The University of British Columbia
    Inventors: Anupam Singhal, Carl L. G. Hansen, John W. Schrader, Charles A. Haynes, Daniel J. Da Costa
  • Patent number: 10794910
    Abstract: There are provided methods, and devices for assaying for a binding interaction between a protein, such as a monoclonal antibody, produced by a cell, and a biomolecule. The method may include retaining the cell within a chamber having an aperture; exposing the protein produced by the cell to a capture substrate, wherein the capture substrate is in fluid communication with the protein produced by the cell and wherein the capture substrate is operable to bind the protein produced by the cell; flowing a fluid volume comprising the biomolecule through the chamber via said aperture, wherein the fluid volume is in fluid communication with the capture substrate; and determining a binding interaction between the protein produced by the cell and the biomolecule.
    Type: Grant
    Filed: June 25, 2020
    Date of Patent: October 6, 2020
    Assignee: The University of British Columbia
    Inventors: Anupam Singhal, Carl L. G. Hansen, John W. Schrader, Charles A. Haynes, Daniel J. Da Costa