Patents Assigned to The University of Connecticut
  • Patent number: 12119146
    Abstract: A heat sink apparatus having a pair of casings hinged in a clamshell arrangement and configured to contain a portion of an electric charging cable, the casings each having an inner space which contains a phase change material for absorbing heat generated during current flow through the electric charging cable.
    Type: Grant
    Filed: June 10, 2020
    Date of Patent: October 15, 2024
    Assignees: The Board of Regents of the University of Oklahoma, The University of Connecticut, The Board of the Trustees of the Leland Stanford Junior University
    Inventors: Hamidreza Shabgard, Amir Faghri, Kenneth Goodson, Mehdi Asheghi
  • Patent number: 11867627
    Abstract: A compact diffuse optical tomography system for generating a functional image of a lesion region is provided. The system includes a source subsystem, a probe, a detection subsystem, and a computing device. The source subsystem includes laser diodes and a laser diode driver board. The probe is configured to emit the optical waves generated by the source subsystem toward the lesion region and detect optical waves reflected by the lesion region. The detection subsystem includes a miniaturized detection board and a miniaturized data acquisition board. The miniaturized detection board includes a photomultiplier tube configured to convert the optical waves detected by the probe to electrical signals. The miniaturized data acquisition board is configured to convert electrical signals outputted by the miniaturized detection board to digital signals. The computing device is configured to receive the digital signals, reconstruct the functional image, and display the functional image.
    Type: Grant
    Filed: October 11, 2019
    Date of Patent: January 9, 2024
    Assignees: Washington University, The University of Connecticut
    Inventors: Quing Zhu, Hamed Vavadi, Atahar Mostafa
  • Patent number: 11616823
    Abstract: Aspects of the subject disclosure may include, for example, embodiments that comprise obtaining a data budget associated with a communication session for streaming video content over a communication network from a video content server, determining a first portion of the data budget that is associated with a first segment of the video content, and obtaining quality information associated with the video content from the video content server over the communication network. Further embodiments can include identifying a first group of tracks for the first segment, and determining a first target quality for the first segment based on the first portion of the data budget and the quality information. Other embodiments are disclosed.
    Type: Grant
    Filed: September 1, 2021
    Date of Patent: March 28, 2023
    Assignees: AT&T Intellectual Property I, L.P., The University of Connecticut
    Inventors: Subhabrata Sen, Bing Wang, Yanyuan Qin
  • Patent number: 11611429
    Abstract: Methods and integrated circuit architectures for assuring the protection of intellectual property between third party IP providers, system designers (e.g., SoC designers), fabrication entities, and assembly entities are provided. Novel design flows for the prevention of IP overuse, IP piracy, and IC overproduction are also provided. A comprehensive framework for forward trust between 3PIP vendors, SoC design houses, fabrication entities, and assembly entities can be achieved, and the unwanted modification of IP can be prevented.
    Type: Grant
    Filed: June 14, 2017
    Date of Patent: March 21, 2023
    Assignees: University of Florida Research Foundation, Incorporated, The University of Connecticut
    Inventors: Mark M. Tehranipoor, Domenic J. Forte, Ujjwal Guin
  • Publication number: 20230069178
    Abstract: Aspects of the subject disclosure may include, for example, embodiments that comprise obtaining a data budget associated with a communication session for streaming video content over a communication network from a video content server, determining a first portion of the data budget that is associated with a first segment of the video content, and obtaining quality information associated with the video content from the video content server over the communication network. Further embodiments can include identifying a first group of tracks for the first segment, and determining a first target quality for the first segment based on the first portion of the data budget and the quality information. Other embodiments are disclosed.
    Type: Application
    Filed: September 1, 2021
    Publication date: March 2, 2023
    Applicants: AT&T Intellectual Property I, L.P., The University of Connecticut
    Inventors: Subhabrata Sen, Bing Wang, Yanyuan Qin
  • Publication number: 20230067019
    Abstract: Aspects of the subject disclosure may include, for example, obtaining data budget for a communication session, identifying video content associated with the communication session, and determining a group of segments associated with the video content. Further embodiments can include determining a segment size for each of the group of segments, identifying a base track for each segment of the group of segments based on the segment size for each segment of the group of segments and the data budget, and identifying a target track for each segment of the group of segments based on the base track for each segment of the group of segments, the segment size for each segment of the group of segments, and the data budget. Additional embodiments can include providing a request for the target track for each segment to a video content server over a communication network. Other embodiments are disclosed.
    Type: Application
    Filed: September 1, 2021
    Publication date: March 2, 2023
    Applicants: AT&T Intellectual Property I, L.P., The University of Connecticut
    Inventors: Subhabrata Sen, Bing Wang, Yanyuan Qin
  • Patent number: 11571978
    Abstract: A charging cable apparatus having a connector, an electrically-conductive cable extending from the connector, the cable configured to be connectable to a charging station for receiving a charging current from the charging station, and having a heat pipe with a phase change section having a wicking structure, the wicking structure having a working fluid therein during operation for receiving heat generated during current flow within the cable. The charging cable apparatus may further have an external condensing surface in fluid communication with the phase change section of the heat pipe for accelerating condensation of evaporated working fluid. The charging cable apparatus may be connected to a charging station for charging an electric battery such as a battery of an electric vehicle.
    Type: Grant
    Filed: January 10, 2020
    Date of Patent: February 7, 2023
    Assignees: The Board of Regents of the University of Oklahoma, The Board of the Trustees of the Leland Stanford Junior University, The University of Connecticut
    Inventors: Hamidreza Shabgard, Amir Faghri, Kenneth Goodson, Mehdi Asheghi
  • Patent number: 11447655
    Abstract: Hybrid organic/inorganic coating compositions of nanometer thickness are described, where the organic layer is a clay-containing layer comprising a clay and a hydrophilic polymer and the inorganic layer is a metal-containing layer comprising a metal with a refractive index greater than 1.5, where the coating compositions allow for the generation and tenability of iridescent color through control of the coat thickness.
    Type: Grant
    Filed: August 17, 2018
    Date of Patent: September 20, 2022
    Assignees: Kaneka Corporation, The University of Connecticut
    Inventors: Luyi Sun, Jingjing Liu, Songshan Zheng, Thomas D'Auria, Young Hoon Lim, Tianlei Zhou, Masaya Kotaki
  • Publication number: 20220034257
    Abstract: A thermal barrier coating for an internal combustion engine includes an insulating thermal spray coating, where a chosen material of the insulating thermal spray coating has a thermal conductivity lower than 2 W/mK in fully dense form and the chosen material includes a coefficient of thermal expansion within 5 ppm/K of a coefficient of thermal expansion of a material of a component of the internal combustion engine upon which the coating is placed.
    Type: Application
    Filed: October 20, 2021
    Publication date: February 3, 2022
    Applicant: The University of Connecticut
    Inventors: Eric Jordan, Chen Jiang, Rishi Kumar, Balakrishnan Nair
  • Publication number: 20210071571
    Abstract: A thermal barrier coating for an internal combustion engine includes an insulating thermal spray coating, where a chosen material of the insulating thermal spray coating has a thermal conductivity lower than 2 W/mK in fully dense form and the chosen material includes a coefficient of thermal expansion within 5 ppm/K of a coefficient of thermal expansion of a material of a component of the internal combustion engine upon which the coating is placed.
    Type: Application
    Filed: September 8, 2020
    Publication date: March 11, 2021
    Applicant: The University of Connecticut
    Inventors: Eric Jordan, Chen Jiang, Rishi Kumar, Balakrishnan Nair
  • Patent number: 10917667
    Abstract: Devices, computer-readable media, and methods for selecting a video chunk from among a plurality of video chunks associated with a first time block of a video in accordance with a designated perceptual visual quality are disclosed. For instance, a processing system including at least one processor may obtain a selection of a designated perceptual visual quality for a video, select a video chunk from among a plurality of video chunks associated with a first time block of the video, based upon a manifest file of the video, where the video chunk is selected in accordance with the designated perceptual visual quality, and where each of the plurality of video chunks is associated with a respective perceptual visual quality. The processing system may further obtain the video chunk from a server and record the video chunk in a buffer.
    Type: Grant
    Filed: September 4, 2019
    Date of Patent: February 9, 2021
    Assignees: AT&T Intellectual Property I, L.P., The University of Connecticut
    Inventors: Subhabrata Sen, Krishna R. Pattipati, Bing Wang, Yanyuan Qin
  • Patent number: 10732187
    Abstract: Described herein are compositions and methods for the detection of inner ear disorders such as balance disorders and hearing disorders resulting from acoustic injury, exposure to ototoxins, head trauma or viral illness. Specifically, otolin-1 and prestin have been verified as inner-ear specific biomarkers suitable for the detection of inner ear disorders.
    Type: Grant
    Filed: February 11, 2016
    Date of Patent: August 4, 2020
    Assignee: The University of Connecticut
    Inventor: Kourosh Parham
  • Patent number: 10573605
    Abstract: A method of assessing vulnerability of Integrated Circuit (IC) can include: preparing a list of logic nets of the IC; obtaining rectangular segments from the logic nets; finding a milling exclusion area based on a covering wire; and superimposing the found milling exclusion area onto the rectangular segments of the logic nets. The milling exclusion area is an area that microprobing attack does not succeed without cutting off at least one of the rectangular segments.
    Type: Grant
    Filed: December 12, 2017
    Date of Patent: February 25, 2020
    Assignees: University of Florida Research Foundation, Incorporated, The University of Connecticut
    Inventors: Mark M. Tehranipoor, Domenic J. Forte, Navid Asadizanjani, Qihang Shi
  • Publication number: 20200039888
    Abstract: A multi-layer coating that allows arrest of contaminant infiltration includes at least one layer that is not very reactive to an infiltrating reactive species, and at least one highly reactive ceramic layer (HRC layer) containing materials that react to slow or arrest contaminant infiltration.
    Type: Application
    Filed: September 26, 2019
    Publication date: February 6, 2020
    Applicant: The University of Connecticut
    Inventors: Eric H. Jordan, Maurice Gell, Rishi Kumar, Chen Jiang
  • Publication number: 20200024979
    Abstract: Thermal barrier coatings and methods to make such coatings present improved resistance to CMAS infiltration. The method for forming a thermal barrier coating includes applying a layer of the thermal barrier coating to a component having a surface, forming a plurality of first channels in the thermal barrier coating, and forming a plurality of second channels in the thermal barrier coating. The first channels extend through a thickness of the thermal barrier coating from an interface with the surface of the component to a free surface opposite the interface. The second channels are disposed between the free surface and the interface and extending lengthwise generally parallel to the free surface of the thermal barrier coating.
    Type: Application
    Filed: June 8, 2019
    Publication date: January 23, 2020
    Applicant: The University of Connecticut
    Inventors: Eric Jordan, Rishi Kumar
  • Patent number: 10053190
    Abstract: An article with controllable wettability includes a substrate and a layer of a composite material supported on the substrate. The layer has an exposed surface and the composite material includes particles that have controllable polarization embedded fully or partially in a matrix. A controller is operable to selectively apply a controlled variable activation energy to the layer. The controllable polarization of the particles varies responsive to the controlled variable activation energy such that a wettability of the exposed surface also varies responsive to the controlled variable activation energy.
    Type: Grant
    Filed: August 7, 2015
    Date of Patent: August 21, 2018
    Assignees: United Technologies Corporation, The University of Connecticut
    Inventors: David Ulrich Furrer, Sergei F. Burlatsky, Paul Elliott, Stephen P. Stagon, Hanchen Huang
  • Patent number: 9814771
    Abstract: The role of a specific E2 region containing a putative fusion peptide (FP) sequence was evaluated. FPs critically contribute to the interaction between proteins and the membrane system of the host cell. Reverse genetics utilizing a full-length infectious clone of the highly virulent CSFV strain Brescia (BICv) was used to evaluate how amino acid substitutions within this region of E2 may affect replication of BICv in cell cultures and affect virus virulence in swine. Interestingly, mutated virus FPi.c was completely attenuated when inoculated intranasally at a dose of 105 TCID50 in swine. Importantly, animals infected with FPi.c virus were protected against the virulent challenge with Brescia virus at 3 and 28 days after vaccination. Protection was evidenced by absence of clinical signs related with CSF as well as the absence of viremia produced by the challenge virulent virus.
    Type: Grant
    Filed: September 8, 2016
    Date of Patent: November 14, 2017
    Assignees: The United States of America, as represented by The Secretary of Agriculture, The University of Connecticut, Universidad del Pais Vasco/Euskal Herriko Univertsitatea (UPV-EHU)
    Inventors: Manuel V. Borca, Douglas P. Gladue, Lauren G. Holinka-Patterson, Vivian O'Donnell, Jose Nieva
  • Patent number: 9808520
    Abstract: African swine fever virus (ASFV) is the etiological agent of a contagious, often lethal viral disease of domestic pigs. The control of African Swine Fever (ASF) has been hampered by the unavailability of vaccines. Experimental vaccines have been derived from naturally occurring, cell culture-adapted, or genetically modified live attenuated ASFVs; however, these vaccines are only successful when protecting against homologous viruses. We have constructed a recombinant ?9GL/?UK virus derived from the highly virulent ASFV Georgia 2007 (ASFV-G) isolate by deleting the specific virulence-associated 9GL (B119L) and the UK (DP96R) genes. In vivo, ASFV-G ?9GL/?UK administered intramuscularly to swine even at relatively high doses (106 HAD50) does not induce disease. Importantly, animals infected with 104 or 106 HAD50 are solidly protected against the presentation of clinical disease when challenged at 28 days post infection with the virulent parental strain Georgia 2007.
    Type: Grant
    Filed: July 1, 2016
    Date of Patent: November 7, 2017
    Assignees: The United States of America as represented by The Secretary of Agriculture, The University of Connecticut
    Inventors: Manuel V. Borca, Douglas P. Gladue, Lauren G. Holinka-Patterson, Guillermo R. Risatti, Vivian K. O'Donnell
  • Patent number: 9528094
    Abstract: African swine fever virus (ASFV) is the etiological agent of a contagious and often lethal viral disease of domestic pigs. Control of ASF has been hampered by the unavailability of vaccines. Experimental vaccines have been derived from naturally occurring, cell culture-adapted, or genetically modified live attenuated ASFVs; however, these vaccines are only successful when protecting against homologous viruses. Among viral genes reported to be involved in virulence are components of the multi gene family (MGF). Here we report the construction of a recombinant ?MGF virus derived from the highly virulent ASFV Georgia 2007 (ASFV-G) isolate. In vivo, ASFV-G ?MGF administered intramuscularly (IM) to swine at either 102 or 104 HAD50 are completely attenuated; the inoculated animals are completely asymptomatic. Animals infected with 102 or 104 HAD50 of ASFV-G ?MGF are protected against the presentation of clinical disease when challenged at 28 days post infection with the virulent parental strain Georgia 2007.
    Type: Grant
    Filed: November 10, 2014
    Date of Patent: December 27, 2016
    Assignees: The United States of America, as Represented by the Secretary of Agriculture, The University of Connecticut
    Inventors: Manuel V. Borca, Lauren G. Holinka-Patterson, Vivian K. O'Donnell, Guillermo S. Risatti, Douglas Gladu
  • Publication number: 20160365475
    Abstract: A method of forming an integrated circuit employs a plurality of layers formed on a substrate including i) n-type modulation doped quantum well structure (MDQWS) structure with n-type charge sheet, ii) p-type MDQWS, iii) undoped spacer layer formed on the n-type charge sheet, iv) p-type layer(s) formed on the undoped spacer layer, v) p-type etch stop layer formed on the p-type layer(s) of iv), and vi) p-type layers (including p-type ohmic contact layer(s)) formed on the p-type etch stop layer. An etch operation removes the p-type layers of vi) for a gate region of an n-channel HFET with an etchant that automatically stops at the p-type etch stop layer. Another etch operation removes the p-type etch stop layer to form a mesa at the p-type layer(s) of iv) which defines an interface to the gate region of the n-channel HFET, and a gate electrode is formed on such mesa.
    Type: Application
    Filed: June 11, 2015
    Publication date: December 15, 2016
    Applicants: The University of Connecticut, Opel Solar, Inc.
    Inventor: Geoff W. Taylor