Abstract: A method for operating a sensor, including simultaneously exciting a first set of electrodes and sensing an output of each electrode of a second set of electrodes, storing output data corresponding to the output of each electrode of the second set of electrodes in a memory storage device, shifting at least one electrode from the first set of electrodes to the second set of electrodes and at least one electrode from the second set of electrodes to the first set of electrodes, and repeating the simultaneously exciting and sensing, the storing, and the shifting until an output data has been stored for each possible pair of electrodes in the first and second set of electrodes.
Type:
Grant
Filed:
July 30, 2015
Date of Patent:
February 28, 2017
Assignees:
The University of Conneticut, United Technologies Corporation
Inventors:
Zhaoyan Fan, Robert X. Gao, Jeffery A. Lovett, Lance L. Smith
Abstract: Controlling Classical Swine Fever Virus (CSFV) involves either prophylactic vaccination or non-vaccination and elimination of infected herds depending on the epidemiological situation. Marker vaccines allowing distinction between naturally infected from vaccinated swine could complement “stamping out” measures. Previously, we reported the development of FlagT4v, a double antigenic marker live attenuated CSFV strain. FlagT4v was later shown as not to be completely stable in terms of its attenuation when assessed in a reversion to virulence protocol. We have developed a modified version of the FlagT4v where changes in the codon usage of genomic areas encoding for Flag and T4 were introduced to rectify the reversion to the virulent genotype. The new virus, FlagT4-mFT-Gv, possesses the same amino acid sequence as FlagT4v except for one substitution, Asparagine is replaced by Glycine at position 852 of the CSFV polypeptide.
Type:
Grant
Filed:
March 7, 2014
Date of Patent:
May 31, 2016
Assignees:
The United States of America as represented by The Secretary of Agriculture, The University of Conneticut
Inventors:
Manuel V. Borca, Guillermo R. Risatti, Lauren G. Holinka-Patterson
Abstract: Methods for the manufacture of nanostructured metals, metal carbides, and metal alloys are presented, such metals including nanostructured aluminum, chromium, iron, molybdenum, vanadium, and steel. Preferably, the nanostructured steel is of the M50 type, and comprises iron, molybdenum, chromium, vanadium and carbon. Synthesis of M50 steel further comprising nanostructured aluminum, aluminum oxide, or aluminum nitride is also described. In accordance with an important feature of this invention, the grain size of the metals and metal alloys is in the nanometer range. In accordance with the method of the present invention, the nanostructured metals, metal carbides, and metal alloys are prepared via chemical synthesis from aluminum, iron, molybdenum, chromium and vanadium starting materials. Decomposition of metal precursors or co-precipitation or precipitation of metal precursors is followed by consolidation of the resulting nanostructured powders.
Type:
Grant
Filed:
September 25, 1996
Date of Patent:
March 7, 2000
Assignee:
The University of Conneticut
Inventors:
Kenneth E. Gonsalves, Sri Prakash Rangarajan
Abstract: A method for introducing foreign nucleic acid sequences into marine mollusks. A pantropic retroviral vector containing a foreign gene sequence is introduced into fertilized mollusk embryos by electroporation. The gene sequence becomes integrated into the host DNA and encodes a functional protein product. This method has implications in the introduction of disease-resistance and growth-accelerating genes into mollusks.
Type:
Grant
Filed:
April 18, 1997
Date of Patent:
October 19, 1999
Assignees:
Ther Regents of The University of California, The University of Conneticut