Patents Assigned to The University of Greenwich
  • Patent number: 12233162
    Abstract: The invention relates to liposomes, methods of producing liposomes, and methods of loading cell-derived liposomes with cargo molecules. The invention extends to such liposomes per se, and to the use of these liposomes as cellular delivery systems for the delivery of biologically and therapeutically active payload molecules, such as small molecules, RNAi molecules (e.g. siRNA), bioactive proteins, genome editing tools (e.g. Cas9) and drugs into cells for treating a range of disorders. The liposomes may also be used in a range of diagnostic and theranostic applications. The invention extends to pharmaceutical compositions comprising such liposomes, including populations of extracellular vesicles (EV), exosomes and to fusion proteins.
    Type: Grant
    Filed: August 9, 2019
    Date of Patent: February 25, 2025
    Assignee: The University of Greenwich
    Inventors: Simon Richardson, Benedita Feron
  • Publication number: 20210338584
    Abstract: The invention relates to liposomes, methods of producing liposomes, and methods of loading cell-derived liposomes with cargo molecules. The invention extends to such liposomes per se, and to the use of these liposomes as cellular delivery systems for the delivery of biologically and therapeutically active payload molecules, such as small molecules, RNAi molecules (e.g. siRNA), bioactive proteins, genome editing tools (e.g. Cas9) and drugs into cells for treating a range of disorders. The liposomes may also be used in a range of diagnostic and theranostic applications. The invention extends to pharmaceutical compositions comprising such liposomes, including populations of extracellular vesicles (EV), exosomes and to fusion proteins.
    Type: Application
    Filed: August 9, 2019
    Publication date: November 4, 2021
    Applicant: The University of Greenwich
    Inventors: Simon RICHARDSON, Benedita FERON
  • Patent number: 11109582
    Abstract: An insect trap (100) and method for trapping and/or killing insects are disclosed. The insect trap comprises an enclosure (10) for receiving a human or an animal, and comprising an opening (12) configured to allow air to flow out of the enclosure and prevent insects from entering the enclosure, and a trapping unit (30) outside of the enclosure and in fluidic communication with the opening. The trapping unit comprises a heatable container (32) comprising either an adhesive material (31) for attracting and trapping an insect or a material comprising insecticide for killing an insect.
    Type: Grant
    Filed: July 21, 2016
    Date of Patent: September 7, 2021
    Assignee: The University of Greenwich
    Inventors: Gabriella Gibson, Frances Hawkes
  • Patent number: 10543638
    Abstract: The invention provides a method of manufacturing a stent (12) using a three dimensional (3D) printer. The invention also extends to 3D printed stents and second medical uses of such stents. The invention also extends to electric signals carrying computer-executable instructions adapted to cause a 3D printer to print a stent, computer-readable programs and computer-readable mediums.
    Type: Grant
    Filed: January 20, 2016
    Date of Patent: January 28, 2020
    Assignee: The University of Greenwich
    Inventors: Dionysios Douroumis, Michael S. A. Bradley, Nicolaos Scoutaris
  • Publication number: 20180229426
    Abstract: The invention provides a method of manufacturing a stent (12) using a three dimensional (3D) printer. The invention also extends to 3D printed stents and second medical uses of such stents. The invention also extends to electric signals carrying computer-executable instructions adapted to cause a 3D printer to print a stent, computer-readable programs and computer-readable mediums.
    Type: Application
    Filed: January 20, 2016
    Publication date: August 16, 2018
    Applicant: The University of Greenwich
    Inventors: Dionysios DOUROUMIS, Michael S.A. BRADLEY, Nicolaos SCOUTARIS