Patents Assigned to The University of Houston System
  • Patent number: 11873417
    Abstract: Durable antibacterial coatings are prepared by inter-diffusing zwitterionic polyurethane in acrylic polyurethane. Bacterial attachment is substantially eliminated from the surface of the coatings due to the hydrophilicity of the zwitterionic polyurethane. Long-term antibacterial properties were observed for both Gram-negative and Gram-positive bacteria even when the coatings were constantly challenged by mechanical abrasion.
    Type: Grant
    Filed: January 6, 2022
    Date of Patent: January 16, 2024
    Assignee: UNIVERSITY OF HOUSTON SYSTEM
    Inventors: Hadi Ghasemi, Zixu Huang
  • Patent number: 11866325
    Abstract: The methods for synthesizing mordenite (MOR) zeolite crystals described herein utilize a combination of organics and produce MOR crystals with reduced size, higher Si/Al ratio, fewer stacking faults, less occluded organics in the final product, and a longer catalyst lifetime.
    Type: Grant
    Filed: May 15, 2019
    Date of Patent: January 9, 2024
    Assignee: UNIVERSITY OF HOUSTON SYSTEM
    Inventors: Jeffrey D. Rimer, Manjesh Kumar
  • Patent number: 11865157
    Abstract: Described herein are pharmaceutical compositions containing peptoids of general formula (I), (II), or (III) capable of reducing proliferation of cancer stem cells in a subject and methods of treatment or prophylactic administration of these pharmaceutical compositions to treat cancer. Also provided herein are method of detecting and treating cancerous cell masses by use of peptoids of general formula (I), (II), or (III).
    Type: Grant
    Filed: January 20, 2023
    Date of Patent: January 9, 2024
    Assignees: University of Houston System, The Board of Regents of the University of Texas System
    Inventors: Damith Gomika Udugamasooriya, Aaron Raymond, John Minna
  • Patent number: 11859121
    Abstract: Viscoelastic icephobic surfaces of the present disclosure include organogel particle beads dispersed in an elastomer matrix. The surfaces are highly repellant to ice formation, easy and cost efficient to apply, and have long term durability for harsh outdoor applications.
    Type: Grant
    Filed: October 12, 2022
    Date of Patent: January 2, 2024
    Assignee: UNIVERSITY OF HOUSTON SYSTEM
    Inventors: Hadi Ghasemi, Peyman Irajizad, Abdullah Al-Bayati
  • Publication number: 20230417736
    Abstract: Embodiments of the present disclosure pertain to systems for use in screening at least one binding agent for binding to at least one cell membrane protein. The systems include one or more cells that include the cell membrane protein. The cell membrane protein is genetically engineered to express a first peptide capable of generating a luminescent signal upon interaction with a second peptide. The systems may also include the second peptide. Additional embodiments of the present disclosure pertain to methods of utilizing the systems to screen at least one binding agent for binding to at least one cell membrane protein.
    Type: Application
    Filed: November 1, 2021
    Publication date: December 28, 2023
    Applicant: UNIVERSITY OF HOUSTON SYSTEM
    Inventors: Bradley K. McConnell, Arfaxad Reyes Alcaraz
  • Publication number: 20230414566
    Abstract: Aryl-substituted acetamide and pyrrolidin-2-one (?-butyrolactam) derivatives have useful activity in the inhibition, prevention, or treatment of seizures. The derivatives may be useful in the treatment of epilepsy, including medically refractory epilepsy, and nerve agent poisoning.
    Type: Application
    Filed: September 7, 2023
    Publication date: December 28, 2023
    Applicant: University of Houston System
    Inventors: Anton Dubrovskiy, Arcadius V. Krivoshein
  • Publication number: 20230399234
    Abstract: Nano-sized zeolites may be prepared using germanium oxide (GeO2) as a component of the overall synthesis composition. This is accomplished by the addition of GeO2 as an inexpensive reagent for the synthesis gel. Most of the Ge is retained in the synthesis mixture and the small amount incorporated in the zeolite solid (Si/Ge>100) does not have an appreciable impact on zeolite acidity or other physicochemical properties. The methods disclosed herein circumvent challenges to prepare nano-sized zeolites having dimensions less than 100 nm.
    Type: Application
    Filed: June 14, 2023
    Publication date: December 14, 2023
    Applicant: University of Houston System
    Inventors: Jeffrey D. Rimer, Deependra Parmar, Adam Mallette
  • Patent number: 11839483
    Abstract: Methods and systems for providing depth-resolved real-time visual feedback to a physician during cosmetic dermal filler injections with micrometer spatial resolution utilizing a noninvasive optical coherence tomography/elastography, 2D-3D virtual and real time system. This system can be automated to direct proper volumes and viscosity of the necessary injection substances. The methods and systems allow for assessment of the elasticity of the tissue before and after the injection to evaluate the efficacy of the injection, with predetermined virtual results before and matched post injection images. The elasticity assessment method preferably utilizes a focused air-pulse to induce a micrometer scale displacement in the skin and the optical coherence tomography system to image this displacement. By utilizing a model-based reconstruction method, the viscoelasticity of the tissue at a specific measurement position can be obtained and virtual and post injection real time projections can be imaged.
    Type: Grant
    Filed: August 25, 2016
    Date of Patent: December 12, 2023
    Assignee: UNIVERSITY OF HOUSTON SYSTEM
    Inventors: Kirill Larin, Richard Yee, Manmohan Singh
  • Patent number: 11833495
    Abstract: Phosphine phosphonate and phenoxyphosphine ligands bearing polyethylene glycol (PEG) chains are used as described herein to produce heterobimetallic catalysts. The ligands can be metallated selectively with palladium or nickel and secondary metal ions to provide well-defined heterobimetallic compounds. These heterobimetallic complexes exhibit accelerated reaction rates and greater thermal stability in olefin polymerization compared to other catalysts.
    Type: Grant
    Filed: March 22, 2023
    Date of Patent: December 5, 2023
    Assignee: UNIVERSITY OF HOUSTON SYSTEM
    Inventors: Loi Hung Do, Zhongzheng Cai, Thi Tran, Dawei Xiao
  • Patent number: 11833554
    Abstract: Systems and methods for the ultrasonic disruption of biofilm and algae growth on underwater structures utilize an ultrasonic actuator that produces a natural frequency in the ultrasonic range. In some embodiments, the ultrasonic actuator includes one or more piezoelectric transducers.
    Type: Grant
    Filed: November 3, 2022
    Date of Patent: December 5, 2023
    Assignee: UNIVERSITY OF HOUSTON SYSTEM
    Inventors: Gangbing Song, Siu Chun Michael Ho, Devendra Patil
  • Publication number: 20230382754
    Abstract: A method including capturing carbon dioxide (CO2) from air (e.g., atmosphere) in an absorber in which the air contacts a base (e.g., a hydroxide, such as potassium hydroxide KOH and/or sodium hydroxide (NaOH)) to produce a carbonate (e.g., potassium carbonate (K2CO3) and/or sodium carbonate (Na2CO3)); precipitating one or more (e.g., carbonate) salt from an aqueous solution comprising salt (a brine) to provide an aqueous solution comprising a chloride (e.g., potassium chloride (KCl) and/or sodium chloride (NaCl)); using electrochemical regeneration to convert the chloride to electrochemically regenerated product comprising the base (e.g., KOH and/or NaOH); and recycling at least a portion of the electrochemically regenerated product comprising the base to the capturing of the CO2 from the air. A system for carrying out the method is also provided.
    Type: Application
    Filed: May 22, 2023
    Publication date: November 30, 2023
    Applicant: University of Houston System
    Inventors: Mohammad RAHIMI, Xiaonan SHAN
  • Publication number: 20230384356
    Abstract: A method and system for quench detection in high temperature superconductors, such as REBCO (rare-earth barium copper oxide), before thermal runaway. A REBCO superconducting tape is excited as a transmission line forming standing waves. A quench may then be detected in response to detecting a disturbance of the standing waves. In this manner, quench in high temperature superconductors, such as REBCO, is rapidly detected before thermal runaway.
    Type: Application
    Filed: April 29, 2023
    Publication date: November 30, 2023
    Applicant: University of Houston System
    Inventors: Goran Majkic, Venkat Selvamanickam, Jarek Wosik
  • Patent number: 11827520
    Abstract: Discussed herein are methods of orienting one-dimensional and two-dimensional materials via the application of stationary and rotating magnetic fields. The oriented one-dimensional and two-dimensional materials may exhibit macroscopic properties, and may be employed in various measurement devices as well as thermal and electrical shielding applications or battery devices. A single 1D or 2D material may be suspended in another material such as dionized water, polymer(s), or other materials during the orientation, and the suspension may remain as a liquid or may be solidified or partially solidified to secure the oriented material(s) into place. The 1D and 2D materials that respond to the magnetic orientation may further cause other elements of the suspension to be oriented in a similar manner.
    Type: Grant
    Filed: September 19, 2017
    Date of Patent: November 28, 2023
    Assignee: UNIVERSITY OF HOUSTON SYSTEM
    Inventors: Jiming Bao, Feng Lin, Zhuan Zhu, Zhiming Wang
  • Publication number: 20230375541
    Abstract: Ultra near-field index modulated plasmonic nano-aperture label-free imaging methods and techniques are useful for imaging and detection of biological microparticles and nanoparticles such as circulating tumor exosomes (CTEs), bacteria and vimses. The methods and techniques utilize a high-density array of gold, silver, or gold/silver alloy nanodisks, in some cases on an undercut or invisible substrate. Given the relatively large nanodisk dimensions, the nanodisk array may feature a significantly blue-shifted LSPR extinction peak due to both far-field plasmonic coupling and substrate undercut. The ultra near-field imaging methods have the ability to image nanoparticles as small as 25 nm.
    Type: Application
    Filed: October 4, 2021
    Publication date: November 23, 2023
    Applicants: University of Houston System, Board of Regents, The University of Texas System
    Inventors: Wei-Chuan Shih, Nareg Ohannesian, Steven H. Lin
  • Patent number: 11821818
    Abstract: A biosensor may provide a magnetoresistive (MR) film comprising a nonmagnetic layer may be sandwiched between the two ferromagnetic layers. The MR film may be positioned on a substrate, where the edges of the MR film are in contact with leads. Additionally, the leads may be in contact with pads. The sensors may provide quasi-digital readout that enable greatly enhanced sensitivity. In some embodiments, biosensors may be arranged as array of sensors. The array of sensors may be arranged as a symmetric or asymmetric N1×N2 array, where N1 and N2 are integers, N1 represents the number of sensors linked together in series, and N2 represents the number of sensor sets in parallel, where each sensor set may comprise one or more sensors. Further, the array of sensors may be coupled to a voltmeter, which may be a single voltmeter in some cases that allows the sensors to all be probed simultaneously.
    Type: Grant
    Filed: July 6, 2018
    Date of Patent: November 21, 2023
    Assignee: University of Houston System
    Inventors: Dmitri Litvinov, Long Chang, Richard Willson
  • Publication number: 20230357714
    Abstract: The present invention relates to a culture media system that useful for the isolation and epigenetically stable propagation of normal stem cells in culture which are derived from columnar epithelial tissues and cancer stem cells from epithelial cancers. In certain embodiments, the culture system is a feeder-free system.
    Type: Application
    Filed: June 19, 2023
    Publication date: November 9, 2023
    Applicant: UNIVERSITY OF HOUSTON SYSTEM
    Inventors: Wa XIAN, Frank McKEON, Matthew P. VINCENT
  • Patent number: 11806333
    Abstract: Aryl-substituted acetamide and pyrrolidin-2-one (?-butyrolactam) derivatives have useful activity in the inhibition, prevention, or treatment of seizures. The derivatives may be useful in the treatment of epilepsy, including medically refractory epilepsy, and nerve agent poisoning.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: November 7, 2023
    Assignee: UNIVERSITY OF HOUSTON SYSTEM
    Inventors: Anton Dubrovskiy, Arcadius V. Krivoshein
  • Patent number: 11802466
    Abstract: A method of recovering crude oil from a reservoir by: determining a depletion pressure for providing a lights-depleted crude oil comprising a reduced amount of light ends including methane, nitrogen, carbon dioxide (CO2), or a combination thereof and having a CO2 multi contact Minimum Miscibility Pressure (CO2-MMP) below a CO2-MMP of a native crude oil, wherein the native crude oil is crude oil extracted from the reservoir prior to primary oil recovery therefrom; depleting the pressure of the reservoir from an initial reservoir pressure to the determined depletion pressure, thus providing the lights-depleted crude oil; repressurizing the reservoir to an operating pressure for recovering the lights-depleted crude oil from the reservoir via carbon dioxide (CO2) injection; injecting CO2 into the reservoir via at least one injection well; and recovering at least a portion of the lights-depleted crude oil from the reservoir via at least one production well.
    Type: Grant
    Filed: October 1, 2019
    Date of Patent: October 31, 2023
    Assignee: UNIVERSITY OF HOUSTON SYSTEM
    Inventors: Ganesh C. Thakur, Peila Chen, Sriram Balasubramanian, Sushanta Bose
  • Publication number: 20230338485
    Abstract: Embodiments of the present disclosure pertain to methods of treating or preventing a cancer in a subject by administering to the subject an immunogenic peptide and/or a nucleotide sequence that expresses the immunogenic peptide. Thereafter, the administered or expressed immunogenic peptide elicits an immune response against cells associated with the cancer. The immunogenic peptides contain a neoantigenic region and are expressed by chimeric nucleotide sequences derived from cells associated with the cancer. The chimeric nucleotide sequences have a higher prevalence in cancer cells when compared to non-cancer cells. Further embodiments pertain to compositions that include the immunogenic peptides of the present disclosure and/or a nucleotide sequences that express them.
    Type: Application
    Filed: September 23, 2021
    Publication date: October 26, 2023
    Applicants: UNIVERSITY OF HOUSTON SYSTEM, BOARD OF REGENTS OF THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: Preethi Gunaratne, Brandon Mistretta, Sakuni Rankothgedera, Micah Castillo, Isabelle Bedrosian
  • Patent number: 11798721
    Abstract: A superconducting electromagnet and method for manufacturing, using, monitoring, and controlling same are disclosed. Embodiments are directed to a superconducting electromagnet that includes a superconductor tape including: a first unslotted end; a second unslotted end; and a longitudinally slotted section provided between the first unslotted end and the second unslotted end. The longitudinally slotted section includes a first longitudinal part and a second longitudinal part. The first longitudinal part is provided in a wound manner thereby defining a first coil. The second longitudinal part is provided in a wound manner thereby defining a second coil. These and other embodiments achieve persistent current operation of the superconducting electromagnet without the need for solder joints within the magnet coil itself, which can result in improved stability and reduced power consumption.
    Type: Grant
    Filed: January 22, 2018
    Date of Patent: October 24, 2023
    Assignee: University of Houston System
    Inventor: John H. Miller, Jr.