Patents Assigned to The University of Massachusetts
  • Publication number: 20230121437
    Abstract: Aspects of the disclosure relate to compositions and methods for exon replacement in a cell or a subject. In some embodiments, the disclosure relates to isolated nucleic acids (and vectors, such as rAAV vectors) encoding one or more guideRNAs (gRNAs) that target an intron-exon boundary; an intronic sequence having a splice signal; and a donor sequence encoding a gene product of a gene of interest, or portion thereof. In some embodiments, compositions described herein are useful for replacing mutant exons associated with certain diseases, for example Duchen's muscular dystrophy (DMD), cystic fibrosis (CF), spinal muscular atrophy (SMA), Rett syndrome, and mucopolysaccharidosis (MPS).
    Type: Application
    Filed: October 14, 2020
    Publication date: April 20, 2023
    Applicant: University of Massachusetts
    Inventors: Guangping Gao, Dan Wang, Jiaming Wang
  • Patent number: 11627908
    Abstract: Instruments and methods for wide-field polarized imaging of the skin to determine an outer lesion margin objectively in vivo to provide guidance to a surgeon. Quantitative characterization of collagen structures in the skin can be used to determine the outer lesion margin or monitor skin treatment.
    Type: Grant
    Filed: March 30, 2018
    Date of Patent: April 18, 2023
    Assignee: UNIVERSITY OF MASSACHUSETTS
    Inventors: Anna N. Yaroslavsky, Victor Neel
  • Patent number: 11631824
    Abstract: A memristive device includes a biomaterial comprising protein nanowires and at least two electrodes in operative arrangement with the biomaterial such that an applied voltage induces conductance switching. An artificial neuron or an artificial synapse includes a memrisitive device with the electrodes configured to apply a pulsed voltage configured to mimic an action-potential input.
    Type: Grant
    Filed: April 8, 2021
    Date of Patent: April 18, 2023
    Assignee: University of Massachusetts
    Inventors: Jun Yao, Derek R. Lovley, Tianda Fu
  • Patent number: 11629347
    Abstract: The present disclosure provides antisense compounds, methods, and compositions for silencing C9ORF72 transcripts. The present disclosure provides antisense compounds, methods, and compositions for the treatment, prevention, or amelioration of diseases, disorders, and conditions associated with C9ORF72 in a subject in need thereof. Also contemplated are antisense compounds and methods for the preparation of a medicament for the treatment, prevention, or amelioration of a disease, disorder, or condition associated with C9ORF72.
    Type: Grant
    Filed: May 6, 2020
    Date of Patent: April 18, 2023
    Assignee: UNIVERSITY OF MASSACHUSETTS
    Inventors: Robert H. Brown, Jr., Jonathan K. Watts, Helene Tran, Michael Moazami
  • Patent number: 11624933
    Abstract: To overcome the problem of a diffractive surface having a large, and often excessively large, amount of chromatic aberration, an optical system can use multiple cascaded or sequential diffractive surfaces that, combined, have a reduced amount of chromatic aberration. The optical system can be designed such that all rays traversing the optical system and passing through the diffractive surfaces have an equal optical path length. In the design process, the sets of rays are identified, and the designs of the diffractive surfaces are selected to produce the angular deviations to produce the identified ray paths. In one example, an achromatic lens formed as two annular optical surfaces can receive a collimated incident beam, redirect rays helically at the first surface toward the second surface, and redirect the rays at the second surface toward a focal point. The azimuthal redirection can decrease with increasing distance away from a central axis.
    Type: Grant
    Filed: March 5, 2020
    Date of Patent: April 11, 2023
    Assignee: University of Massachusetts
    Inventors: Amir Arbabi, Andrew Corby McClung
  • Patent number: 11617684
    Abstract: A negative pressure wound closure devices, systems and methods. Embodiments of the invention facilitate closure of the wound by preferentially contracting under negative pressure to provide for movement of the surrounding tissues. Some embodiments may utilize a stabilizing structure with a plurality of cells configured to collapses more in the x-direction than in the y-direction.
    Type: Grant
    Filed: November 1, 2017
    Date of Patent: April 4, 2023
    Assignees: Smith & Nephew, Inc., University of Massachusetts
    Inventors: Jeremy Nicholas Carey, Raymond M. Dunn, Victoria Jody Hammond, Edward Yerbury Hartwell, Sarah Elizabeth Knight, Marcus Damian Phillips, Diego Alfredo Punin-Albarracin, Mark Richardson, Carl Dean Saxby, Michael Sugrue, Iain Webster
  • Publication number: 20230101762
    Abstract: A see-through type display apparatus includes an image projector configured to output image light, a waveguide configured to receive the image light output from the image projector and transmit the image light to a user's view, and a first lens having a negative refractive power and a second lens having a positive refractive power, which are arranged on both surfaces of the waveguide. Each of the first lens and the second lens includes one or more meta lenses and is configured to operate as a lens with almost no chromatic aberration, thereby implementing a thin optical system having good image quality.
    Type: Application
    Filed: September 29, 2022
    Publication date: March 30, 2023
    Applicants: SAMSUNG ELECTRONICS CO., LTD., UNIVERSITY OF MASSACHUSETTS
    Inventors: Seunghoon HAN, Amir ARBABI, Hyunsung PARK
  • Patent number: 11613269
    Abstract: Traversing a vehicle transportation network includes operating a scenario-specific operational control evaluation module instance. The scenario-specific operational control evaluation module instance includes an instance of a scenario-specific operational control evaluation model of a distinct vehicle operational scenario. Operating the scenario-specific operational control evaluation module instance includes identifying a multi-objective policy for the scenario-specific operational control evaluation model. The multi-objective policy may include a relationship between at least two objectives. Traversing the vehicle transportation network includes receiving a candidate vehicle control action associated with each of the at least two objectives. Traversing the vehicle transportation network includes selecting a vehicle control action based on a buffer value.
    Type: Grant
    Filed: December 23, 2019
    Date of Patent: March 28, 2023
    Assignees: Nissan North America, Inc., The University of Massachusetts, Renault S.A.S.
    Inventors: Kyle Hollins Wray, Stefan Witwicki, Shlomo Zilberstein
  • Publication number: 20230089490
    Abstract: Aspects of the disclosure relate to compositions and methods for treating certain diseases associated with the presence of one or more premature stop codons in a gene, for example dominantly inherited diseases or recessively inherited diseases. In some embodiments, compositions comprise a vector (e.g., a viral vector, such as an rAAV vector) encoding one or more synthetic suppressor transfer RNAs (tRNAs) configured to read-through certain stop codons (e.g., premature stop codons). In some embodiments, the disclosure relates to methods for treating Hurler syndrome comprising administering such vectors to a subject.
    Type: Application
    Filed: October 9, 2020
    Publication date: March 23, 2023
    Applicant: University of Massachusetts
    Inventors: Guangping Gao, Craig Mendonca, Dan Wang
  • Publication number: 20230089312
    Abstract: Aspects of the disclosure relate to compositions and methods for regulation of transgene (e.g., miRNAs, shRNAs or coding sequences) expression from viral vectors. In some embodiments, the disclosure provides expression constructs comprising a viral vector encoding one or more transgenes, the expression of which is regulated by a rapamycin/rapalog-based system.
    Type: Application
    Filed: February 24, 2021
    Publication date: March 23, 2023
    Applicant: University of Massachusetts
    Inventors: Christian Mueller, Neil Aronin
  • Patent number: 11607259
    Abstract: A surgical elevator device that can be used in the reduction of bone fractures, particularly facial bone fractures, and even more particularly zygomatic arch fractures. The elevator device enables accurate measurement of the depth of insertion of the device into tissue space and provides tactile control of fracture location and reduction. In one embodiment, the elevator device comprises a groove on an elevator element for receiving a bone structure. The groove can be formed by a pair of parallel ridges. A projection extending from the elevator provides a pivot point for applying a controlled force to the bone to reduce the fracture. A preferred embodiment further comprises a method of reducing a bone fracture, such as a zygomatic arch fracture.
    Type: Grant
    Filed: March 5, 2019
    Date of Patent: March 21, 2023
    Assignee: University of Massachusetts
    Inventor: Raymond Dunn
  • Patent number: 11603379
    Abstract: The invention provides novel zwitterionic monomers and polymers (including copolymers) with pendent phosphonium-based zwitterionic moieties, and compositions and products comprising same, as well as related methods and uses of the compositions, for example, as surfactants, coatings, and interlayer materials, biomedical materials or agents.
    Type: Grant
    Filed: September 9, 2020
    Date of Patent: March 14, 2023
    Assignee: University of Massachusetts
    Inventors: Marcel U. Brown, Todd Emrick
  • Publication number: 20230073187
    Abstract: The disclosure relates to compositions and methods for rAAV-mediated delivery of a transgene to a subject. In some embodiments, the rAAV transduces the prostate tissue of a subject. In some embodiments, the methods are useful for treatment of prostate disease (e.g., prostatitis, BPH, prostate cancer).
    Type: Application
    Filed: July 19, 2022
    Publication date: March 9, 2023
    Applicant: University of Massachusetts
    Inventors: Guangping Gao, Jianzhong Ai, Hong Li, Qiang Wei
  • Publication number: 20230062193
    Abstract: A meta-lens includes a first layer that is arranged on a substrate and that includes a plurality of first nanostructures and a second layer including a plurality of second nanostructures separately arranged from the first nanostructures. The meta-lens may focus light of a plurality of wavelengths or light of a wide wavelength bandwidth due to the arrangement of the nanostructures in a multilayer structure.
    Type: Application
    Filed: November 9, 2022
    Publication date: March 2, 2023
    Applicants: SAMSUNG ELECTRONICS CO., LTD., UNIVERSITY OF MASSACHUSETTS
    Inventors: Seunghoon HAN, Mahdad MANSOUREE, Amir ARBABI, Suyeon LEE
  • Publication number: 20230067741
    Abstract: The disclosure relates, in some aspects, to adeno-associated virus capsid proteins isolated from an in vivo library and recombinant adeno-associated viruses (rAAVs) comprising the same. In some aspects, the disclosure relates to isolated nucleic acids encoding AAV capsid proteins isolated from an in vivo library. In some embodiments, rAAVs and compositions described by the disclosure are useful for delivery of one or more transgenes to the muscle-tissue of a subject.
    Type: Application
    Filed: September 7, 2022
    Publication date: March 2, 2023
    Applicants: University of Massachusetts, The Johns Hopkins University, Kennedy Krieger Institute, Inc.
    Inventors: Miguel Sena Esteves, Sourav Roy Choudhury, Kathryn Rae Wagner, Jennifer Gifford Green, Ana Rita Batista
  • Patent number: 11592414
    Abstract: Electrochemical sensors useful for detection of heavy metals are described. The electrochemical sensors can be made by forming a layer of graphene oxide on a working electrode, forming a layer of carbon nanotubes (CNTs) on the layer of graphene oxide, and forming a layer of gold nanostars on the layer of CNTs.
    Type: Grant
    Filed: February 27, 2019
    Date of Patent: February 28, 2023
    Assignee: University of Massachusetts
    Inventors: Pradeep Unnikrishnan Kurup, Susom Dutta
  • Publication number: 20230057380
    Abstract: Aspects of the disclosure relate to a recombinant adeno-virus encoding an anti-Vascular endothelial cell growth factor (VEGF) agent in a cell or subject (e.g., rAAV2.7m8-KH902). In some embodiments, compositions described herein are useful for treating subjects having diseases associated with angiogenesis or aberrant VEGF activity/signaling.
    Type: Application
    Filed: November 25, 2020
    Publication date: February 23, 2023
    Applicants: University of Massachusetts, Chengdu Kanghong Biotechnology Co. Ltd.
    Inventors: Guangping Gao, Phillip Tai, Claudio Punzo, Zunhong Ke
  • Patent number: 11584813
    Abstract: Various embodiments disclosed relate to a resin having a structure of at least one of Formula I and Formula II: In Formula I or Formula II R1, R3, R4, R5, and R6 can each be independently selected from the group consisting of hydrogen and substituted or unsubstituted (C1-C10)alkyl. R2 is (C1-C10) alkylene. L is a substituted or unsubstituted (C1-C10)alkylene or (C3-C10)cycloalkylene. In Formula I or Formula II, n or m is greater than or equal to 0, and wherein the resin has an average molecular weight of less than 10,000 g/mol.
    Type: Grant
    Filed: March 2, 2018
    Date of Patent: February 21, 2023
    Assignee: University of Massachusetts
    Inventor: Daniel Frederick Schmidt
  • Patent number: 11587696
    Abstract: Aspects relate to patterned nanostructures having a feature size not including film thickness of below 5 microns. The patterned nanostructures are made up of nanoparticles having an average particle size of less than 100 nm. A nanoparticle composition, which, in some cases, includes a binder, is applied to a substrate. A patterned mold used in concert with electromagnetic radiation function to manipulate the nanoparticle composition in forming the patterned nanostructure. In some embodiments, the patterned mold nanoimprints a pattern onto the nanoparticle composition and the composition is cured through UV or thermal energy. Three-dimensional patterned nanostructures may be formed. A number of patterned nanostructure layers may be prepared and joined together. In some cases, a patterned nanostructure may be formed as a layer that is releasable from the substrate upon which it is initially formed.
    Type: Grant
    Filed: April 7, 2022
    Date of Patent: February 21, 2023
    Assignee: University of Massachusetts
    Inventors: James Watkins, Michael R. Beaulieu, Nicholas R. Hendricks
  • Patent number: 11586884
    Abstract: A diffusive memristor device and an electronic device for emulating a biological neuron is disclosed. The diffusive memristor device includes a bottom electrode, a top electrode formed opposite the bottom electrode, and a dielectric layer disposed between the top electrode and the bottom electrode. The dielectric layer comprises an oxide doped with a metal.
    Type: Grant
    Filed: February 8, 2019
    Date of Patent: February 21, 2023
    Assignee: University of Massachusetts
    Inventors: Jianhua Yang, Qiangfei Xia, Mark McLean, Qing Wu