Patents Assigned to Therasense, Inc.
-
Publication number: 20100312085Abstract: A blood glucose meter having a compact housing, a display unit disposed on the housing, the display unit including a display light source to illuminate the display unit, an input unit disposed on the housing, the input unit configured to provide input functions for the blood glucose meter, and a power source provided within the housing for providing power to the blood glucose meter, where the housing includes a port integrated on said housing configured to receive a blood glucose test strip, and corresponding methods of measuring blood glucose meter is provided.Type: ApplicationFiled: August 18, 2010Publication date: December 9, 2010Applicant: TheraSense, Inc.Inventors: Tae Wan Andrews, Stephen C. Bubrick, Sheilah S. Estoesta, Brad D. Etter, Hyoung Yoon Park, Gene Ming Pon, Christopher V. Reggiardo, Heber Saravia
-
Publication number: 20100099972Abstract: A glucose meter module integrated into a holster device that can securely accommodate another device such as a portable server device or an insulin pump is described. The glucose measuring module and the health device communicate with each other by a short range wireless modality. In the case in which the accommodated device is a server, such as personal digital assistant or cell phone, the device stores data in a memory, displays data on a visual display, and can wirelessly transmit such data to other devices within a personal area network. In the case where the accommodated device is a cell phone, the phone can further transmit data to remote sites. In the case where the accommodated device is an insulin pump, wirelessly received data are stored in a memory, are available for visual display on the insulin pump, and can be incorporated into the electronic processes that regulate the performance of the pump.Type: ApplicationFiled: December 23, 2009Publication date: April 22, 2010Applicants: TheraSense, Inc.Inventor: Timothy T. Goodnow
-
Publication number: 20100099973Abstract: A glucose meter module integrated into a holster device that can securely accommodate another device such as a portable server device or an insulin pump is described. The glucose measuring module and the health device communicate with each other by a short range wireless modality. In the case in which the accommodated device is a server, such as personal digital assistant or cell phone, the device stores data in a memory, displays data on a visual display, and can wirelessly transmit such data to other devices within a personal area network. In the case where the accommodated device is a cell phone, the phone can further transmit data to remote sites. In the case where the accommodated device is an insulin pump, wirelessly received data are stored in a memory, are available for visual display on the insulin pump, and can be incorporated into the electronic processes that regulate the performance of the pump.Type: ApplicationFiled: December 28, 2009Publication date: April 22, 2010Applicants: TheraSense, Inc.Inventor: Timothy T. Goodnow
-
Publication number: 20100099174Abstract: A blood glucose meter having a compact housing, a display unit disposed on the housing, the display unit including a display light source to illuminate the display unit, an input unit disposed on the housing, the input unit configured to provide input functions for the blood glucose meter, and a power source provided within the housing for providing power to the blood glucose meter, where the housing includes a port integrated on said housing configured to receive a blood glucose test strip, and corresponding methods of measuring blood glucose meter is provided.Type: ApplicationFiled: December 22, 2009Publication date: April 22, 2010Applicants: TheraSense, Inc.Inventors: Tae Wan Andrews, Stephen C. Bubrick, Sheilah S. Estoesta, Brad D. Etter, Hyoung Yoon Park, Gene Ming Pon, Christopher V. Reggiardo, Heber Saravia
-
Patent number: 7545272Abstract: A glucose monitoring system, includes a glucose sensor strip or package of strips. The strip includes a substrate and a glucose monitoring circuit that has electrodes and a bodily fluid application portion of selected chemical composition. An antenna is integrated with the glucose sensor strip. A RFID sensor chip is coupled with the glucose sensor strip and the antenna. The chip has a memory containing digitally-encoded data representing calibration and/or expiration date information for the strip.Type: GrantFiled: February 7, 2006Date of Patent: June 9, 2009Assignee: TheraSense, Inc.Inventors: Timothy T. Goodnow, Lei (Lawrence) He
-
Publication number: 20090078586Abstract: A sensor designed to determine the amount and concentration of analyte in a sample having a volume of less than about 1 ?L. The sensor has a working electrode coated with a non-leachable redox mediator. The redox mediator acts as an electron transfer agent between the analyte and the electrode. In addition, a second electron transfer agent, such as an enzyme, can be added to facilitate the electrooxidation or electroreduction of the analyte. The redox mediator is typically a redox compound bound to a polymer. The preferred redox mediators are air-oxidizable. The amount of analyte can be determined by coulometry. One particular coulometric technique includes the measurement of the current between the working electrode and a counter or reference electrode at two or more times. The charge passed by this current to or from the analyte is correlated with the amount of analyte in the sample. Other electrochemical detection methods, such as amperometric, voltammetric, and potentiometric techniques, can also be used.Type: ApplicationFiled: February 7, 2008Publication date: March 26, 2009Applicant: TheraSense, Inc.Inventors: Adam Heller, Benjamin J. Feldman, James Say, Mark S. Vreeke
-
Publication number: 20090082693Abstract: Method and apparatus for providing temperature sensor module in a transmitter unit of a continuous glucose monitoring system includes a temperature probe portion provided with thermally conductive material such as thermally conductive epoxy provided in the temperature sensor module that is press fitted, insert molded, heat stacked, or attached by adhesive to the bottom portion of the transmitter housing. The temperature sensor module is substantially in physical contact with the patient's skin, and thus is configured to detect the skin temperature corresponding to each measured blood glucose level from the sensor.Type: ApplicationFiled: December 29, 2004Publication date: March 26, 2009Applicant: TheraSense, Inc.Inventor: Gary Ashley Stafford
-
Publication number: 20090048501Abstract: A glucose meter module integrated into a holster device that can securely accommodate another device such as a portable server device or an insulin pump is described. The glucose measuring module and the health device communicate with each other by a short range wireless modality. In the case in which the accommodated device is a server, such as personal digital assistant or cell phone, the device stores data in a memory, displays data on a visual display, and can wirelessly transmit such data to other devices within a personal area network. In the case where the accommodated device is a cell phone, the phone can further transmit data to remote sites. In the case where the accommodated device is an insulin pump, wirelessly received data are stored in a memory, are available for visual display on the insulin pump, and can be incorporated into the electronic processes that regulate the performance of the pump.Type: ApplicationFiled: July 14, 2004Publication date: February 19, 2009Applicant: TheraSense, Inc.Inventor: Timothy T. Goodnow
-
Publication number: 20080287760Abstract: A process for the manufacture of small sensors with reproducible surfaces, including electrochemical sensors. One process includes forming channels in the surface of a substrate and disposing a conductive material in the channels to form an electrode. The conductive material can also be formed on the substrate by other impact and non-impact methods. In a preferred embodiment, the method includes cutting the substrate to form a sensor having a connector portion and a transcutaneous portion, the two portions having edges that define one continuous straight line.Type: ApplicationFiled: October 30, 2007Publication date: November 20, 2008Applicant: THERASENSE, INC.Inventors: James Say, Michael F. Tomasco, Adam Heller, Yoram Gal, Behrad Aria, Ephraim Heller, Phillip John Plante, Mark S. Vreeke
-
Publication number: 20080287759Abstract: A process for the manufacture of small sensors with reproducible surfaces, including electrochemical sensors. One process includes forming channels in the surface of a substrate and disposing a conductive material in the channels to form an electrode. The conductive material can also be formed on the substrate by other impact and non-impact methods. In a preferred embodiment, the method includes cutting the substrate to form a sensor having a connector portion and a transcutaneous portion, the two portions having edges that define one continuous straight line.Type: ApplicationFiled: October 30, 2007Publication date: November 20, 2008Applicant: THERASENSE, INC.Inventors: James SAY, Michael F. Tomasco, Adam Heller, Yoram Gal, Behrad Aria, Ephraim Heller, Phillip John Plante, Mark S. Vreeke
-
Publication number: 20080277291Abstract: A sensor designed to determine the amount and concentration of analyte in a sample having a volume of less than about 1 ?L. The sensor has a working electrode coated with a non-leachable redox mediator. The redox mediator acts as an electron transfer agent between the analyte and the electrode. In addition, a second electron transfer agent, such as an enzyme, can be added to facilitate the electrooxidation or electroreduction of the analyte. The redox mediator is typically a redox compound bound to a polymer. The preferred redox mediators are air-oxidizable. The amount of analyte can be determined by coulometry. One particular coulometric technique includes the measurement of the current between the working electrode and a counter or reference electrode at two or more times. The charge passed by this current to or from the analyte is correlated with the amount of analyte in the sample. Other electrochemical detection methods, such as amperometric, voltammetric, and potentiometric techniques, can also be used.Type: ApplicationFiled: February 7, 2008Publication date: November 13, 2008Applicant: TheraSense, Inc.Inventors: Adam Heller, Benjamin J. Feldman, James Say, Mark S. Vreeke
-
Publication number: 20080281175Abstract: A process for the manufacture of small sensors with reproducible surfaces, including electrochemical sensors. One process includes forming channels in the surface of a substrate and disposing a conductive material in the channels to form an electrode. The conductive material can also be formed on the substrate by other impact and non-impact methods. In a preferred embodiment, the method includes cutting the substrate to form a sensor having a connector portion and a transcutaneous portion, the two portions having edges that define one continuous straight line.Type: ApplicationFiled: October 30, 2007Publication date: November 13, 2008Applicant: THERASENSE, INC.Inventors: James Say, Michael F. Tomasco, Adam Heller, Yoram Gal, Behrad Aria, Ephraim Heller, Phillip John Plante, Mark S. Vreeke
-
Publication number: 20080276455Abstract: A process for the manufacture of small sensors with reproducible surfaces, including electrochemical sensors. One process includes forming channels in the surface of a substrate and disposing a conductive material in the channels to form an electrode. The conductive material can also be formed on the substrate by other impact and non-impact methods. In a preferred embodiment, the method includes cutting the substrate to form a sensor having a connector portion and a transcutaneous portion, the two portions having edges that define one continuous straight line.Type: ApplicationFiled: October 30, 2007Publication date: November 13, 2008Applicant: THERASENSE, INC.Inventors: James Say, Michael F. Tomasco, Adam Heller, Yoram Gal, Behrad Aria, Ephraim Heller, Phillip John Plante, Mark S. Vreeke
-
Publication number: 20080281176Abstract: A process for the manufacture of small sensors with reproducible surfaces, including electrochemical sensors. One process includes forming channels in the surface of a substrate and disposing a conductive material in the channels to form an electrode. The conductive material can also be formed on the substrate by other impact and non-impact methods. In a preferred embodiment, the method includes cutting the substrate to form a sensor having a connector portion and a transcutaneous portion, the two portions having edges that define one continuous straight line.Type: ApplicationFiled: October 30, 2007Publication date: November 13, 2008Applicant: THERASENSE, INC.Inventors: JAMES SAY, Michael F. Tomasco, Adam Heller, Yoram Gal, Behrad Aria, Ephraim Heller, Phillip John Plante, Mark S. Vreeke
-
Publication number: 20080281177Abstract: A process for the manufacture of small sensors with reproducible surfaces, including electrochemical sensors. One process includes forming channels in the surface of a substrate and disposing a conductive material in the channels to form an electrode. The conductive material can also be formed on the substrate by other impact and non-impact methods. In a preferred embodiment, the method includes cutting the substrate to form a sensor having a connector portion and a transcutaneous portion, the two portions having edges that define one continuous straight line.Type: ApplicationFiled: October 30, 2007Publication date: November 13, 2008Applicant: THERASENSE, INC.Inventors: JAMES SAY, Michael F. Tomasco, Adam Heller, Yoram Gal, Behrad Aria, Ephraim Heller, Phillip John Plante, Mark S. Vreeke
-
Publication number: 20080277294Abstract: A sensor designed to determine the amount and concentration of analyte in a sample having a volume of less than about 1 ?L. The sensor has a working electrode coated with a non-leachable redox mediator. The redox mediator acts as an electron transfer agent between the analyte and the electrode. In addition, a second electron transfer agent, such as an enzyme, can be added to facilitate the electrooxidation or electroreduction of the analyte. The redox mediator is typically a redox compound bound to a polymer. The preferred redox mediators are air-oxidizable. The amount of analyte can be determined by coulometry. One particular coulometric technique includes the measurement of the current between the working electrode and a counter or reference electrode at two or more times. The charge passed by this current to or from the analyte is correlated with the amount of analyte in the sample. Other electrochemical detection methods, such as amperometric, voltammetric, and potentiometric techniques, can also be used.Type: ApplicationFiled: February 7, 2008Publication date: November 13, 2008Applicant: TheraSense, IncInventors: Adam Heller, Benjamin J. Feldman, James Say, Mark S. Vreeke
-
Publication number: 20080277292Abstract: A sensor designed to determine the amount and concentration of analyte in a sample having a volume of less than about 1 ?L. The sensor has a working electrode coated with a non-leachable redox mediator. The redox mediator acts as an electron transfer agent between the analyte and the electrode. In addition, a second electron transfer agent, such as an enzyme, can be added to facilitate the electrooxidation or electroreduction of the analyte. The redox mediator is typically a redox compound bound to a polymer. The preferred redox mediators are air-oxidizable. The amount of analyte can be determined by coulometry. One particular coulometric technique includes the measurement of the current between the working electrode and a counter or reference electrode at two or more times. The charge passed by this current to or from the analyte is correlated with the amount of analyte in the sample. Other electrochemical detection methods, such as amperometric, voltammetric, and potentiometric techniques, can also be used.Type: ApplicationFiled: February 7, 2008Publication date: November 13, 2008Applicant: TheraSense, Inc.Inventors: Adam HELLER, Benjamin J. FELDMAN, James SAY, Mark S. VREEKE
-
Publication number: 20080277293Abstract: A sensor designed to determine the amount and concentration of analyte in a sample having a volume of less than about 1 ?L. The sensor has a working electrode coated with a non-leachable redox mediator. The redox mediator acts as an electron transfer agent between the analyte and the electrode. In addition, a second electron transfer agent, such as an enzyme, can be added to facilitate the electrooxidation or electroreduction of the analyte. The redox mediator is typically a redox compound bound to a polymer. The preferred redox mediators are air-oxidizable. The amount of analyte can be determined by coulometry. One particular coulometric technique includes the measurement of the current between the working electrode and a counter or reference electrode at two or more times. The charge passed by this current to or from the analyte is correlated with the amount of analyte in the sample. Other electrochemical detection methods, such as amperometric, voltammetric, and potentiometric techniques, can also be used.Type: ApplicationFiled: February 7, 2008Publication date: November 13, 2008Applicant: TheraSense, Inc.Inventors: Adam Heller, Benjamin J. Feldman, James Say, Mark S. Vreeke
-
Publication number: 20080275323Abstract: A process for the manufacture of small sensors with reproducible surfaces, including electrochemical sensors. One process includes forming channels in the surface of a substrate and disposing a conductive material in the channels to form an electrode. The conductive material can also be formed on the substrate by other impact and non-impact methods. In a preferred embodiment, the method includes cutting the substrate to form a sensor having a connector portion and a transcutaneous portion, the two portions having edges that define one continuous straight line.Type: ApplicationFiled: October 30, 2007Publication date: November 6, 2008Applicant: THERASENSE, INC.Inventors: James Say, Michael F. Tomasco, Adam Heller, Yoram Gal, Behrad Aria, Ephraim Heller, Phillip John Plante, Mark S. Vreeke
-
Publication number: 20080275423Abstract: A process for the manufacture of small sensors with reproducible surfaces, including electrochemical sensors. One process includes forming channels in the surface of a substrate and disposing a conductive material in the channels to form an electrode. The conductive material can also be formed on the substrate by other impact and non-impact methods. In a preferred embodiment, the method includes cutting the substrate to form a sensor having a connector portion and a transcutaneous portion, the two portions having edges that define one continuous straight line.Type: ApplicationFiled: October 30, 2007Publication date: November 6, 2008Applicant: THERASENSE, INC.Inventors: James Say, Michael F. Tomasco, Adam Heller, Yoram Gal, Behrad Aria, Ephraim Heller, Phillip John Plante, Mark S. Vreeke