Abstract: A reinforced pipe includes a pipe liner, longitudinal reinforcement, and a helically wound radial reinforcement layer. The longitudinal reinforcement includes a unidirectional material generally parallel to the axis of the pipe liner. The longitudinal reinforcement prevents the pipe from expanding lengthwise, and the radial reinforcement layer prevents the pipe from expanding radially.
Abstract: A reinforced thermoplastic extrusion and a related method of manufacture are provided. The reinforced thermoplastic extrusion includes an extruded polymeric member, a thermoplastic reinforcing layer, and an intermediate vapor barrier between the extruded polymeric member and the thermoplastic reinforcing layer. The intermediate vapor barrier is bonded to the exterior of the extruded polymeric member and/or the interior of the thermoplastic reinforcing layer to limit the transfer of volatile hydrocarbons therethrough. Surface sulfonation can additionally be included to decrease the permeability of the thermoplastic extrusion to volatile hydrocarbons and other gases that can affect the performance of the outer thermoplastic reinforcing layer.
Abstract: Fiber-reinforced molding materials and a related method of manufacture are provided. The fiber-reinforced molding materials include a fiber-reinforced tape that is moldable into complex structures at relatively low pressures while having high fiber concentrations. The fiber-reinforced tape includes a plurality of discontinuous fiber segments extending unidirectionally within a thermoplastic matrix material. The fiber-reinforced tape can be interwoven into multiple woven panels that are consolidated to form a fiber-reinforced mat. The fiber-reinforced mat is suitable for a wide range of molding applications where high strength and light weight are desired, while accommodating a variety of reinforcing fibers and thermoplastic resins.
Abstract: The specification discloses a method and a coupler for joining polymeric tubular objects, such as pipe. The coupler includes (a) a rigid, electromagnetically inductive carrier, (b) a temperature-responsive expandable material on the carrier, and (c) a polymeric material on the expandable material. The method includes the steps of (a) inserting the coupler into the ends of two adjacent polymeric tubular objects, (b) creating an electromagnetic field about the coupler causing the carrier to heat, in turn causing the expandable material to expand and force the polymeric material against the tubular objects, and further in turn causing the polymeric material to melt, soften, or liquefy, and (c) terminating the electromagnetic field allowing the polymeric material to cure or solidify to bond to the tubular objects.
Abstract: The specification discloses a method and a coupler for joining polymeric tubular objects, such as pipe. The coupler includes (a) a rigid, electromagnetically inductive carrier, (b) a temperature-responsive expandable material on the carrier, and (c) a polymeric material on the expandable material. The method includes the steps of (a) inserting the coupler into the ends of two adjacent polymeric tubular objects, (b) creating an electromagnetic field about the coupler causing the carrier to heat, in turn causing the expandable material to expand and force the polymeric material against the tubular objects, and further in turn causing the polymeric material to melt, soften, or liquefy, and (c) terminating the electromagnetic field allowing the polymeric material to cure or solidify to bond to the tubular objects.