Abstract: A warming unit and method for warming an infusion medium prior to introducing the medium into a patient's body. The apparatus includes an outer casing, inlet and outlet tubes secured to the outer casing, a fluid conduit for transporting the infusion medium through the warming unit, and a heating element disposed proximate to the fluid conduit for warming the infusion medium flowing therethrough. The warming unit can form part of a system, which further includes a controller for controlling various functions of and separate from the warming unit, a reservoir containing the infusion medium, and a power source for powering the warming unit.
Type:
Grant
Filed:
May 22, 2013
Date of Patent:
February 3, 2015
Assignee:
Thermacore Technologies, Inc.
Inventors:
C. Kenneth French, Garrett Barker, Wyatt Earp
Abstract: A warming unit and method for warming an infusion medium prior to introducing the medium into a patient's body. The apparatus includes an outer casing, inlet and outlet tubes secured to the outer casing, a fluid conduit for transporting the infusion medium through the warming unit, and a heating element disposed proximate to the fluid conduit for warming the infusion medium flowing therethrough. The warming unit can form part of a system, which further includes a controller for controlling various functions of and separate from the warming unit, a reservoir containing the infusion medium, and a power source for powering the warming unit.
Type:
Grant
Filed:
August 9, 2006
Date of Patent:
June 18, 2013
Assignee:
Thermacore Technologies, Inc.
Inventors:
C. Kenneth French, Garrett Barker, Wyatt Earp
Abstract: The flexible cooling fabric has an injector that is flat so that it can be maintained unobtrusively within the cooling fabric. The injector has a flat electromagnetic coil which surrounds an injection chamber. The chamber receives pressurized fluid, but a spring-biased plunger closes the outlet openings to the chamber. The fluid of the electromagnetic coil tends to center the plunger within the chamber to uncover the outlet openings, and the fluid flows toward a membrane which is against the skin or other object to be cooled. The refrigerant gas boils due to the heat flux from the skin, and this results in rapid and efficient cooling. The present invention also includes a system for recycling spent refrigerant gas. The gas is collected in a volume absorber, and only when the volume inside of the absorber reaches a predetermined maximum does the compressor operate to relieve the pressure in the volume absorber by compressing the spent gas and injecting it back into the storage tank.
Abstract: A container for dispensing a refrigerant as a liquid under pressure includes a vessel for holding the refrigerant. The bladder in the vessel has a relatively small amount of a liquid having a higher vapor pressure greater than the vapor pressure of the refrigerant. The bladded has flexible walls so that the vaporized pressurizing fluid expands the bladder walls to pressurize the refrigerant in the first container. The pressure maintains the refrigerant as a liquid under pressure as refrigerant is dispensed from the vessel. A channel member may also be provided within the vessel for channeling liquid refrigerant between regions of the vessel if the bladder or the collapsing vessel blocks a portion of the inside of the vessel. Alternatively, the bladder surrounds the vessel. The bladder and vessel are within an outer container. As the bladder expands, it collapses the walls of the vessel when refrigerant is dispensed from the first container.