Abstract: A heat pump and method are presented which includes a compact two-compartment housing in which each compartment contains a condensor-evaporator. The heat pump which has upper and lower compartments which are vertically aligned is installed totally within the interior of a building and air from the attic area of the building is used as a supply while spent air is exhausted below the heat pump and no outside wall space is required for installation. The method of operation includes reversing the refrigerant flow and during the heating cycle condensate from the upper condensor-evaporator is directed to the lower condensor-evaporator to provide humidity to the interior of the building.
Abstract: A heat pump and method are presented which includes a compact two-compartment housing in which each compartment contains a condensor-evaporator. The heat pump which has upper and lower compartments which are vertically aligned is installed totally within the interior of a building and air from the attic area of the building is used as a supply while spent air is exhausted below the heat pump and no outside wall space is required for installation. The method of operation includes reversing the refrigerant flow and during the heating cycle condensate from the upper condensor-evaporator is directed to the lower condensor-evaporator to provide humidity to the interior of the building.
Abstract: The heat exchanger unit is highly efficient in operation and is so constructed as to permit rapid installation in and removal from the earth at small size sites of desired use of the heat pump system. The unit includes a freon-conduction coil assembly preferably comprised of a plurality of concentric coils defining parallel flow paths for the fluid conducted to and from the heat exchanger unit during operation of the system. In one embodiment the coils are preferably formed of tubing of deffering diameters, and the convolutions of each coil are preferably spaced from one another and from the other coils of the assembly. The coil assembly may be enclosed by an impervious cylindrical casing to and from which anti-freeze liquid may be readily conducted while he heat exchanger unit is situated entirely below ground level. Water supply means may be provided in association with the heat exchanger unit to maintain the soil adjacent thereto in a moist condition.
Abstract: The heat exchanger unit is highly efficient in operation and is so constructed as to permit rapid installation in and removal from the earth at small size sites of desired use of the heat pump system. The unit includes a freon-conducting coil assembly preferably comprised of a plurality of concentric coils defining parallel flow paths for the fluid conducted to and from the heat exchanger unit during operation of the system. In one embodiment the coils are preferably formed of tubing of differing diameters, and the convolutions of each coil are preferably spaced from one another and from the other coils of the assembly. The coil assembly may be enclosed by an impervious cylindrical casing to and from which anti-freeze liquid may be readily conducted while the heat exchanger unit is situated entirely below ground level. Water supply means may be provided in association with the heat exchanger unit to maintain the soil adjacent thereto in a moist condition.