Patents Assigned to Thermal Science, Inc.
-
Patent number: 11959708Abstract: A heat exchanger includes an inlet for receiving bulk solids, a plurality of heat transfer plate assemblies, a plurality of spacers disposed between adjacent heat transfer plate assemblies, and supports for supporting the heat transfer plate assemblies. The heat transfer plate assemblies include a first plate having a first pair of holes extending therethrough, the first plate having channels extending along a surface thereof, for the flow of fluid through the channels, and a second plate bonded to the first plate to enclose the channels, the second plate including a second pair of holes generally aligned with the first pair of holes to form through holes to facilitate flow of the fluid through the through holes and the channels.Type: GrantFiled: November 6, 2018Date of Patent: April 16, 2024Assignees: Solex Thermal Science Inc., National Technology and Engineering Solutions of Sandia, Vacuum Process Engineering, Inc.Inventors: Ashley D. Byman, Robert McGillivray, Brandon Emmanuel St Germain, Layne Charles, Kevin James Albrecht, Dereje Shiferaw Amogne, Matthew David Carlson, Clifford Kuofei Ho, Carl P. Schalansky, Aaron Edward Wildberger
-
Patent number: 9683781Abstract: An indirect-heat thermal processor for processing bulk solids includes a housing including an inlet for receiving the bulk solids and an outlet for discharging the bulk solids and a plurality of heat transfer plate assemblies disposed between the inlet and the outlet and arranged in spaced relationship for the flow of the bulk solids that flow from the inlet, between the heat transfer plate assemblies, to the outlet.Type: GrantFiled: August 13, 2015Date of Patent: June 20, 2017Assignee: Solex Thermal Science Inc.Inventor: Ashley D. Byman
-
Patent number: 9562194Abstract: A torrefaction reactor includes a preheater section and a torrefaction section arranged to receive the biomass material from the preheater section. The preheater section includes a plurality of preheater plates arranged to facilitate the flow of the biomass material between the preheater plates by the force of gravity, each of the preheater plates facilitates a flow of a preheater fluid through the preheater plate for heating the biomass material. The torrefaction section includes a plurality of torrefaction plates arranged to facilitate the flow of the biomass material between the torrefaction plates by the force of gravity, each the torrefaction plates facilitates a flow of a torrefaction fluid through the torrefaction plate for heating the biomass material to the torrefaction temperature, and a first and second torrefaction purge gas openings to facilitate a flow of a torrefaction purge gas for providing an oxygen-depleted environment within the torrefaction section.Type: GrantFiled: February 11, 2014Date of Patent: February 7, 2017Assignee: Solex Thermal Science Inc.Inventors: Marc Jules Adelin Ghislain Kellens, Farah Skold, Ashley Dean Byman, Bernhard George Van Bommel
-
Publication number: 20150225649Abstract: A torrefaction reactor includes a preheater section and a torrefaction section arranged to receive the biomass material from the preheater section. The preheater section includes a plurality of preheater plates arranged to facilitate the flow of the biomass material between the preheater plates by the force of gravity, each of the preheater plates facilitates a flow of a preheater fluid through the preheater plate for heating the biomass material. The torrefaction section includes a plurality of torrefaction plates arranged to facilitate the flow of the biomass material between the torrefaction plates by the force of gravity, each the torrefaction plates facilitates a flow of a torrefaction fluid through the torrefaction plate for heating the biomass material to the torrefaction temperature, and a first and second torrefaction purge gas openings to facilitate a flow of a torrefaction purge gas for providing an oxygen-depleted environment within the torrefaction section.Type: ApplicationFiled: February 11, 2014Publication date: August 13, 2015Applicant: Solex Thermal Science Inc.Inventors: Marc Jules Adelin Ghislain KELLENS, Farah SKOLD, Ashley Dean BYMAN
-
Patent number: 8578624Abstract: A method and apparatus for indirect-heat thermal processing of material, such as a dryer or evaporator for treatment of particulate material, is provided. In one embodiment, a dryer for drying particulate material comprises a plurality of heat transfer plates arranged in spaced relationship for the flow of the material to be dried therebetween. Each heat transfer plate is provided with an inlet and an outlet for the flow of the heating fluid through the plates. A purge fluid delivery system provides a flow of purge fluid, such as air, gas or steam between the plates in a direction across the direction of flow of the material to be dried. The purge fluid delivery system provides a flow path for the purge fluid which is isolated from the flow of the heating fluid through the plates. A method for the indirect-heat processing of particulate material is also provided.Type: GrantFiled: May 5, 2006Date of Patent: November 12, 2013Assignee: Solex Thermal Science Inc.Inventors: Neville Jordison, Niels A. Rozendaal, Peter Xingeun Huang
-
Patent number: 7107118Abstract: A fully integrated automated laser weld process control system (LWPCS) and method of controlling the fabrication of structural parts, particularly for shipbuilding and other industries. The LWPCS defines joint and weld quality attributes as process control variables and integrates these weld quality variables, along with the more traditional process parameters such as laser power, wire feed, GMAW voltage and active seam tracking, into a closed-loop monitoring and control system. The LWPCS includes a central processor and a plurality of subsystems that control laser beam positioning, vision-based monitoring and image processing, active weld-quality monitoring and inspection, adaptive beam delivery, and seam tracking. Cross-communication between subsystems is managed by the central processor. In addition to process control, the system extracts weld quality attributes during the weld process and provides immediate documentation of the weld quality.Type: GrantFiled: June 3, 2004Date of Patent: September 12, 2006Assignee: Applied Thermal Sciences, Inc.Inventors: Nelson J. Orozco, Paul A. Blomquist, Kendrick H. Light, Robert B. Rudy, Steven R. Webber
-
Publication number: 20020119717Abstract: A composite system capable of protecting a substrate from a jet fire including a lower layer of an active fire protective material and an upper layer of a fire protective material. The upper layer forms an open cell matrix when exposed to a jet fire to permit passage of gasses from the lower layer to ambient. The upper layer comprises a fill of refractory material and protects the system during initial exposure to a hyperthermal condition. The upper layer swells on exposure to hyperthermal conditions, but swells less than the lower layer.Type: ApplicationFiled: December 21, 2001Publication date: August 29, 2002Applicant: Thermal Science, Inc.Inventors: Edward W. Taylor, Rubin Feldman, James A. Rippe
-
Patent number: 6190579Abstract: Electron emission materials consisting of carbides, borides, and oxides, and related mixtures and compounds, of Group IVB metals Hf, Zr, and Ti, Group IIA metals Be, Mg, Ca, Sr, and Ba, and Group IIIB metals Sc, Y, and lanthanides La through Lu are used in electrodes. The electron emission materials include ternary Group IVB-IIIB, IVB-IIA, and IIIB-IIA oxides and quaternary Group IVB-IIIB-IIA oxides. These electron emission materials are typically contained in a refractory metal matrix formed of tungsten, molybdenum, tantalum, rhenium, and their alloys, but may also be used by themselves. These materials and electrodes have high melting points, low vapor pressures, low work functions, high electrical and thermal conductivity, and high thermionic electron emission and field emission properties.Type: GrantFiled: November 8, 1999Date of Patent: February 20, 2001Assignee: Integrated Thermal Sciences, Inc.Inventor: Garth W. Billings
-
Patent number: 6051165Abstract: Electron emission materials consisting of carbides, borides, and oxides, and related mixtures and compounds, of Group IVB metals Hf, Zr, and Ti, Group IIA metals Be, Mg, Ca, Sr, and Ba, and Group IIIB metals Sc, Y, and lanthanides La through Lu are used in electrodes. The electron emission materials include ternary Group IVB-IIIB and IVB-IIA oxides. These electron emission materials are typically contained in a refractory metal matrix formed of tungsten, tantalum, rhenium, and their alloys, but may also be used by themselves. These materials and electrodes have high melting points, low vapor pressures, low work functions, high electrical and thermal conductivity, and high thermionic electron emission and field emission properties.Type: GrantFiled: February 26, 1999Date of Patent: April 18, 2000Assignee: Integrated Thermal Sciences Inc.Inventor: Garth W. Billings
-
Patent number: 5934900Abstract: Refractory ceramics and composite materials consisting of nitrides, carbides, mixed carbides and oxides, oxycarbides, mixed nitrides and oxides, and oxynitrides of Group IVB metals Hf, Zr, and Ti, Group IIA metals Be, Mg, Ca, Sr, and Ba, and Group IIIB metals Sc, Y, and lanthanides La through Lu are used to form refractory articles, or as coatings for refractory articles. These materials and articles have high resistance to molten metals, molten salts, erosion, and high temperature corrosive environments, and can be engineered to have desirable thermal and electrical properties. The refractory materials encompass nitrides, carbides, reacted ternary and quaternary oxides, mixed carbides and oxides, oxycarbides, mixed nitrides and oxides, and oxynitrides and have the general chemical formula M.sub.x1 M'.sub.x2 M".sub.x3 N.sub.y C.sub.w O.sub.z where M is Hf, Zr, or Ti, M' is Be, Mg, Ca, Sr, or Ba, M" is Sc, Y, and lanthanides La through Lu, N is nitrogen, C is carbon, O is oxygen.Type: GrantFiled: March 24, 1997Date of Patent: August 10, 1999Assignee: Integrated Thermal Sciences, Inc.Inventor: Garth W. Billings
-
Patent number: 5911919Abstract: Electron emission materials consisting of carbides, borides, and oxides, and related mixtures and compounds, of Group IVB metals Hf, Zr, and Ti, Group IIA metals Be, Mg, Ca, Sr, and Ba, and Group IIIB metals Sc, Y and lanthanides La through Lu are used in electrodes. These electron emission materials are typically contained in a refractory metal matrix formed of tungsten, tantalum, rhenium, and their alloys, but may also be used by themselves. These materials and electrodes have high melting points, low vapor pressures, low work functions, high electrical and thermal conductivity, and high thermionic electron emission and field emission properties.Type: GrantFiled: September 8, 1997Date of Patent: June 15, 1999Assignee: Integrated Thermal Sciences, Inc.Inventor: Garth W. Billings
-
Patent number: 5622774Abstract: Coating compositions for blocking heat from hyperthermal sources are reinforced with high-temperature, high emissivity, open weave fabrics. The coating compositions contain materials which actively respond to excessively high temperatures by undergoing endothermic processes or by swelling, preferably by both. The preferred fabrics are made of graphite or cardo-polymer yarns. The reinforced compositions may be applied directly to a substrate, or they may be molded into self-supporting shapes which are applied to the substrate or are themselves structural units.Type: GrantFiled: December 29, 1994Date of Patent: April 22, 1997Assignee: Thermal Science, Inc.Inventors: Rubin Feldman, Edward W. Taylor
-
Patent number: 4832928Abstract: A method of continuously producing ammonium polyphosphate by the reaction of urea and polyphosphoric acid, over a wide range of molecular weights, in a pre-mix slurry, under controlled temperature of about 315.degree.+/-15.degree. C. The slurry is reacted on a hot, continuously moving surface and forms ammonium polyphosphate in an ammonia atmosphere. Preferably, the pre-mixed slurry is added to a screw-type extruder, where the material comes in contact with the ammonia along the preheated moving surfaces of the extruder. The ammonium polyphosphate is scraped from the extrusion screw into a container with minimum handling. The material can be ground to a finer consistency if desired.Type: GrantFiled: July 21, 1987Date of Patent: May 23, 1989Assignee: Thermal Science, Inc.Inventors: John A. Parker, Rubin Feldman, Robert L. Bryant
-
Patent number: 4748255Abstract: Reaction of an aromatic dianhydride with a polycyclic aromatic primary diamine at a controlled reaction rate yields a diamic acid dianhydride oligomer. The oligomer may be a precursor for an imide foam which forms at low temperature, has outstanding physical characteristics, and is extremely heat resistant. The diamic acid moiety may be converted to diimide, and other modifications of the oligomer are disclosed. Other derivatives of the oligomers are also disclosed.Type: GrantFiled: July 27, 1987Date of Patent: May 31, 1988Assignee: Thermal Science, Inc.Inventors: John A. Parker, Rubin Feldman, Robert L. Bryant
-
Patent number: 4729916Abstract: An envelope system for protecting a substrate from fire or other thermal extreme. The system includes a screen, which surrounds the entire substrate and which is set off from the substrate by ridges folded into the screen, and a thermal protective coating applied to the screen and spaced from the substrate by the screen to form an air gap between the substrate and the coating.Type: GrantFiled: November 29, 1984Date of Patent: March 8, 1988Assignee: Thermal Science, Inc.Inventor: Rubin Feldman
-
Patent number: 4687785Abstract: Reaction of an aromatic dianhydride with a polycyclic aromatic primary diamine at a controlled reaction rate yields a diamic acid dianhydride oligomer. The oligomer may be a precursor for an imide foam which forms at low temperature, has outstanding physical characteristics, and is extremely heat resistant. The diamic acid moiety may be converted to diimide, and other modifications of the oligomer are disclosed. Other derivatives of the oligomers are also disclosed.Type: GrantFiled: August 27, 1985Date of Patent: August 18, 1987Assignee: Thermal Science, Inc.Inventors: John A. Parker, Rubin Feldman, Robert L. Bryant
-
Patent number: 4687651Abstract: A method of continuously producing ammonium polyphosphate by the reaction of urea and polyphosphoric acid, over a wide range of molecular weights, in a pre-mix slurry, under controlled temperature of about 315.degree.+/-15.degree. C. The slurry is reacted on a hot, continuously moving surface and forms ammonium polyphosphate in an ammonia atmosphere. Preferably, the pre-mixed slurry is added to a screw-type extruder, where the material comes in contact with the ammonia along the preheated moving surfaces of the extruder. The ammonium polyphosphate is scraped from the extrusion screw into a container with minimum handling. The material can be ground to a finer consistency if desired.Type: GrantFiled: October 15, 1985Date of Patent: August 18, 1987Assignee: Thermal Science, Inc.Inventors: John A. Parker, Rubin Feldman, Robert L. Bryant
-
Patent number: 4493945Abstract: An envelope system for protecting a substrate from fire or other thermal extreme. The system includes a screen, which surrounds the entire substrate and which is set off from the substrate by ridges folded into the screen, and a thermal protective coating applied to the screen and spaced from the substrate by the screen to form an air gap between the substrate and the coating.Type: GrantFiled: August 23, 1982Date of Patent: January 15, 1985Assignee: Thermal Science, Inc.Inventor: Rubin Feldman