Patents Assigned to Thermal Technologies, Inc.
  • Patent number: 11388811
    Abstract: A heat-dissipating substrate structure with built-in conductive circuits is provided. The heat-dissipating substrate structure includes an electrically insulating layer, a first metal layer, a second metal layer, and a heat-dissipating layer. The first metal layer and the second metal layer are disposed on the heat-dissipating layer at an interval. The electrically insulating layer encloses and is in contact with side walls of the first metal layer and side walls of the second metal layer, such that a top wall of the first metal layer and a top wall of the second metal layer are exposed from the electrically insulating layer, and at least one of the conductive circuits extends through at least one of the side wall of the first metal layer and the side wall of the second metal layer and is embedded in the electrically insulating layer.
    Type: Grant
    Filed: May 21, 2021
    Date of Patent: July 12, 2022
    Assignee: AMULAIRE THERMAL TECHNOLOGY, INC.
    Inventors: Shih-Hsi Tai, Tze-Yang Yeh
  • Patent number: 11353269
    Abstract: Methods, apparatuses, and systems are disclosed for flexible thermal ground planes. A flexible thermal ground plane may include a support member. The flexible thermal ground plane may include an evaporator region or multiple evaporator regions configured to couple with the support member. The flexible thermal ground plane may include a condenser region or multiple condenser regions configured to couple with the support member. The evaporator and condenser region may include a microwicking structure. The evaporator and condenser region may include a nanowicking structure coupled with the micro-wicking structure, where the nanowicking structure includes nanorods. The evaporator and condenser region may include a nanomesh coupled with the nanorods and/or the microwicking structure. Some embodiments may include a micromesh coupled with the nanorods and/or the microwicking structure.
    Type: Grant
    Filed: November 11, 2019
    Date of Patent: June 7, 2022
    Assignee: Kelvin Thermal Technologies, Inc.
    Inventors: Ronggui Yang, Yung-Cheng Lee, Victor M. Bright, Chen Li, Christopher Oshman, Bo Shi, Jen-Hau Cheng, George P. Peterson
  • Patent number: 11310916
    Abstract: A metal circuit on a polymer composite substrate surface and a method for manufacturing the same are provided. The metal circuit on the polymer composite substrate surface includes a polymer composite layer and a metal circuit layer. The metal circuit layer is formed from a metal piece molded by metal processing, and is integrated onto a surface of the polymer composite layer. The metal circuit layer has one or a plurality of circuit grooves formed therein, the polymer composite layer has one or a plurality of bulges formed therein, and the bulge is deformed and bulged at the corresponding circuit groove.
    Type: Grant
    Filed: December 23, 2020
    Date of Patent: April 19, 2022
    Assignee: AMULAIRE THERMAL TECHNOLOGY, INC.
    Inventors: Jhao-Siang Jheng, Chun-Lung Wu
  • Patent number: 11302601
    Abstract: An IGBT module with a heat dissipation structure and a method for manufacturing the same are provided. The IGBT module with a heat dissipation structure includes a layer of IGBT chips, a bonding layer, a thick copper layer, a thermally-conductive and electrically-insulating layer, and a heat dissipation layer. A portion of the thermally-conductive and electrically-insulating layer is made of a polymer composite material, and a remaining portion of the thermally-conductive and electrically-insulating layer is made of a ceramic material. The thick copper layer is bonded onto the thermally-conductive and electrically-insulating layer by hot pressing. A fillet is formed at a bottom edge of the thick copper layer, and the bottom edge of the thick copper layer is embedded into the thermally-conductive and electrically-insulating layer.
    Type: Grant
    Filed: December 21, 2020
    Date of Patent: April 12, 2022
    Assignee: AMULAIRE THERMAL TECHNOLOGY, INC.
    Inventors: Tzu-Hsuan Wang, Tze-Yang Yeh, Chih-Hung Shih
  • Patent number: 11081421
    Abstract: An IGBT module with a heat dissipation structure includes a first layer of chips, a second layer of chips, a first bonding layer, a second bonding layer, a first copper layer, a second copper layer, a first polymer composite layer, a second polymer composite layer, a first ceramic layer, a second ceramic layer, and a heat dissipation layer. The first ceramic layer is partially formed on the heat dissipation layer and corresponds in position and in area to the first layer of chips, and the second ceramic layer is partially formed on the heat dissipation layer and corresponds in position and in area to the second layer of chips.
    Type: Grant
    Filed: December 12, 2019
    Date of Patent: August 3, 2021
    Assignee: AMULAIRE THERMAL TECHNOLOGY, INC.
    Inventors: Tzu-Hsuan Wang, Tze-Yang Yeh, Chun-Lung Wu
  • Patent number: 11037857
    Abstract: An IGBT module with a heat dissipation structure includes a first layer of chips, a second layer of chips, a first bonding layer, a second bonding layer, a first copper layer, a second copper layer, a thermally-conductive and electrically-insulating layer, and a heat dissipation layer. The first copper layer and the second copper layer are disposed on the thermally-conductive and electrically-insulating layer at intervals. The first layer of chips and the second layer of chips are disposed on the first bonding layer and the second bonding layer, respectively. The number of chips of the first layer of chips is larger than that of the second layer of chips such that the first copper layer has a greater thickness than the second copper layer.
    Type: Grant
    Filed: December 12, 2019
    Date of Patent: June 15, 2021
    Assignee: AMULAIRE THERMAL TECHNOLOGY, INC.
    Inventors: Tzu-Hsuan Wang, Tze-Yang Yeh, Chun-Lung Wu
  • Patent number: 10861768
    Abstract: An IGBT module with an improved heat dissipation structure includes a layer of IGBT chips, a bonding layer, a thick copper layer, a polymer composite layer, a thermal spray layer, and a heat dissipation layer. The thermal spray layer is disposed on the heat dissipation layer. The polymer composite layer is disposed on the thermal spray layer. The thick copper layer is disposed on the polymer composite layer. The bonding layer is disposed on the thick copper layer. The layer of IGBT chips is disposed on the bonding layer.
    Type: Grant
    Filed: June 16, 2019
    Date of Patent: December 8, 2020
    Assignee: AMULAIRE THERMAL TECHNOLOGY, INC.
    Inventors: Tze-Yang Yeh, Chun-Lung Wu
  • Patent number: 10724804
    Abstract: A thermal ground plane with hybrid structures that include nanowires is disclosed. The thermal ground plane includes a first casing having an exterior surface and an interior surface, the interior surface includes plurality of microstructures with a plurality of nanowires; a second casing, wherein the first casing and the second casing are sealed to an interior space that includes a working fluid; and a wicking layer disposed within the interior space.
    Type: Grant
    Filed: November 8, 2017
    Date of Patent: July 28, 2020
    Assignee: Kelvin Thermal Technologies, Inc.
    Inventors: Ryan John Lewis, Ronggui Yang, Yung-Cheng Lee
  • Patent number: 10571200
    Abstract: Methods, apparatuses, and systems are disclosed for flexible thermal ground planes. A flexible thermal ground plane may include a support member. The flexible thermal ground plane may include an evaporator region or multiple evaporator regions configured to couple with the support member. The flexible thermal ground plane may include a condenser region or multiple condenser regions configured to couple with the support member. The evaporator and condenser region may include a microwicking structure. The evaporator and condenser region may include a nanowicking structure coupled with the micro-wicking structure, where the nanowicking structure includes nanorods. The evaporator and condenser region may include a nanomesh coupled with the nanorods and/or the microwicking structure. Some embodiments may include a micromesh coupled with the nanorods and/or the microwicking structure.
    Type: Grant
    Filed: February 17, 2017
    Date of Patent: February 25, 2020
    Assignee: KELVIN THERMAL TECHNOLOGIES, INC.
    Inventors: Ronggui Yang, Yung-Cheng Lee, Victor M. Bright, Chen Li, Christopher Oshman, Bo Shi, Jen-Hau Cheng, George P. Peterson
  • Patent number: 10527358
    Abstract: Methods, apparatuses, and systems are disclosed for flexible thermal ground planes. A flexible thermal ground plane may include a support member. The flexible thermal ground plane may include an evaporator region or multiple evaporator regions configured to couple with the support member. The flexible thermal ground plane may include a condenser region or multiple condenser regions configured to couple with the support member. The evaporator and condenser region may include a microwicking structure. The evaporator and condenser region may include a nanowicking structure coupled with the micro-wicking structure, where the nanowicking structure includes nanorods. The evaporator and condenser region may include a nanomesh coupled with the nanorods and/or the microwicking structure. Some embodiments may include a micromesh coupled with the nanorods and/or the microwicking structure.
    Type: Grant
    Filed: October 13, 2016
    Date of Patent: January 7, 2020
    Assignee: KELVIN THERMAL TECHNOLOGIES, INC.
    Inventors: Ronggui Yang, Yung-Cheng Lee, Victor M. Bright, Chen Li, Christopher Oshman, Bo Shi, Jen-Hau Cheng, George P. Peterson
  • Patent number: 10475723
    Abstract: An IGBT heat dissipation structure includes a layer of IGBT chips, a bonding layer, a cold spray layer, a thermal spray layer, and a heat dissipation layer. The thermal spray layer is disposed on top of the heat dissipation layer. The cold spray layer is disposed on top of the thermal spray layer. The bonding layer is disposed on top of the cold spray layer, and the layer of IGBT chips is disposed on top of the bonding layer.
    Type: Grant
    Filed: November 6, 2018
    Date of Patent: November 12, 2019
    Assignee: Amulaire thermal technology, INC.
    Inventors: Tze-Yang Yeh, Chun-Lung Wu
  • Patent number: 10446466
    Abstract: A heat dissipation structure for a semiconductor integrated circuit die having a plurality of connection areas may include a thermal mount comprising a plurality of pillars each having an aspect ratio preferable greater than 2:1 and each positioned to connect to one of the connection areas on a peripheral portion of the semiconductor integrated circuit die with one of a plurality of interface layers. A thermal conductivity of materials for the connection areas, the thermal mount, the pillars, each of which is preferably copper, and the interface layers, which are preferably copper nanoparticle layers, has a thermal conductivity greater than 100 Watts per meter degree Kelvin (W/m·K). Flexure of the pillars accommodates mechanical strain arising from temperature changes and differences in coefficients of thermal expansion for materials of the semiconductor integrated circuit die and the thermal mount.
    Type: Grant
    Filed: May 3, 2018
    Date of Patent: October 15, 2019
    Assignees: Raytheon Company, Kelvin Thermal Technologies, Inc.
    Inventors: Jason G. Milne, Tse E. Wong, Yung-Cheng Lee
  • Patent number: 10258274
    Abstract: A unitary multilumen cranial bolt for use in multimodal monitoring of a plurality of physiological parameters in brain tissue incorporates a plurality of lumens, each lumen directing a catheter borne sensor through a bore hole in the cranium and into brain tissue of a patient. The lumens are configured to cause the catheters to splay outward as they enter the cranial cavity and reach their intended depth of penetration. Each lumen is associated with a guide. The guides are adapted for use with introducers that enable fragile and/or flexible sensors to be introduced into brain tissue. Each catheter borne sensor can be positioned and repositioned within brain tissue independently of all other sensors.
    Type: Grant
    Filed: November 22, 2017
    Date of Patent: April 16, 2019
    Assignee: Thermal Technologies, Inc.
    Inventors: H Frederick Bowman, Sammy M Khalifa, Dean Honkonen
  • Patent number: 10174943
    Abstract: An integrated fuel combustion system with gas separation (adsorptive, absorptive, membrane or other suitable gas separation) separates a portion of carbon dioxide from a combustion gas mixture and provides for recycle of separated carbon dioxide to the intake of a fuel combustor for combustion.
    Type: Grant
    Filed: December 31, 2013
    Date of Patent: January 8, 2019
    Assignee: INVENTYS THERMAL TECHNOLOGIES INC.
    Inventor: Andre Boulet
  • Patent number: 10052064
    Abstract: An edema monitor uses patient-specific measurements of tissue conductivity and tissue perfusion and an empirically developed perfusion coefficient of thermal conductivity to obtain tissue intravascular water and tissue extravacular water components of tissue total water. Edema is an excess of tissue extravacular water. A value for edema is obtained by deducting from the obtained value for tissue extravacular water a normal value for tissue extravacular water.
    Type: Grant
    Filed: April 1, 2014
    Date of Patent: August 21, 2018
    Assignee: Thermal Technologies, Inc.
    Inventor: H. Frederick Bowman
  • Patent number: 10015907
    Abstract: A heat dissipating device includes a thermal conductive substance, a plurality of heat-radiating protrusions and a plurality of turbulence-generating structures. The thermal conductive substance has a first surface and a second surface opposite to the first surface. The heat-radiating protrusions are integrally formed with the thermal conductive substance on the first surface. At least one of the turbulence-generating structures is formed on the first surface of the thermal conductive substance in concaved manner, and arranged around a bottom periphery of the heat-radiating protrusions, so as to obstruct a development of a boundary layer around the bottom of the heat-radiating protrusions.
    Type: Grant
    Filed: March 23, 2016
    Date of Patent: July 3, 2018
    Assignee: AMULAIRE THERMAL TECHNOLOGY, INC.
    Inventors: Chun-Lung Wu, Ming-Sian Lin
  • Publication number: 20180092590
    Abstract: A unitary multilumen cranial bolt for use in multimodal monitoring of a plurality of physiological parameters in brain tissue incorporates a plurality of lumens, each lumen directing a catheter borne sensor through a bore hole in the cranium and into brain tissue of a patient. The lumens are configured to cause the catheters to splay outward as they enter the cranial cavity and reach their intended depth of penetration. Each lumen is associated with a guide. The guides are adapted for use with introducers that enable fragile and/or flexible sensors to be introduced into brain tissue. Each catheter borne sensor can be positioned and repositioned within brain tissue independently of all other sensors.
    Type: Application
    Filed: November 22, 2017
    Publication date: April 5, 2018
    Applicant: Thermal Technologies, Inc.
    Inventors: H. Frederick Bowman, Sammy M. Khalifa, Dean Honkonen
  • Patent number: 9921004
    Abstract: Embodiments described herein relate to the concept and designs of a polymer-based thermal ground plane. In accordance with one embodiment, a polymer is utilized as the material to fabricate the thermal ground plane. Other embodiments include am optimized wicking structure design utilizing two arrays of micropillars, use of lithography-based microfabrication of the TGP using copper/polymer processing, micro-posts, throttled releasing holes embedded in the micro-posts, atomic layer deposition (ALD) hydrophilic coating, throttled fluid charging structure and sealing method, defect-free ALD hermetic coating, and compliant structural design.
    Type: Grant
    Filed: October 28, 2015
    Date of Patent: March 20, 2018
    Assignee: KELVIN THERMAL TECHNOLOGIES, INC.
    Inventors: Ryan John Lewis, Yung-Cheng Lee, Li-Anne Liew, Yunda Wang
  • Patent number: 9909814
    Abstract: Methods, apparatuses, and systems are disclosed for flexible thermal ground planes. A flexible thermal ground plane may include a support member. The flexible thermal ground plane may include an evaporator region or multiple evaporator regions configured to couple with the support member. The flexible thermal ground plane may include a condenser region or multiple condenser regions configured to couple with the support member. The evaporator and condenser region may include a microwicking structure. The evaporator and condenser region may include a nanowicking structure coupled with the micro-wicking structure, where the nanowicking structure includes nanorods. The evaporator and condenser region may include a nanomesh coupled with the nanorods and/or the microwicking structure. Some embodiments may include a micromesh coupled with the nanorods and/or the microwicking structure.
    Type: Grant
    Filed: September 22, 2015
    Date of Patent: March 6, 2018
    Assignee: KELVIN THERMAL TECHNOLOGIES, INC.
    Inventors: Ronggui Yang, Yung-Cheng Lee, Victor M. Bright, Chen Li, Christopher Oshman, Bo Shi, Jen-Hau Cheng, George P. Peterson
  • Patent number: 9651312
    Abstract: Methods, apparatuses, and systems are disclosed for flexible thermal ground planes. A flexible thermal ground plane may include a support member. The flexible thermal ground plane may include an evaporator region or multiple evaporator regions configured to couple with the support member. The flexible thermal ground plane may include a condenser region or multiple condenser regions configured to couple with the support member. The evaporator and condenser region may include a microwicking structure. The evaporator and condenser region may include a nanowicking structure coupled with the micro-wicking structure, where the nanowicking structure includes nanorods. The evaporator and condenser region may include a nanomesh coupled with the nanorods and/or the microwicking structure. Some embodiments may include a micromesh coupled with the nanorods and/or the microwicking structure.
    Type: Grant
    Filed: April 8, 2015
    Date of Patent: May 16, 2017
    Assignee: KELVIN THERMAL TECHNOLOGIES, INC.
    Inventors: Ronggui Yang, Yung-Cheng Lee, Victor M. Bright, Chen Li, Christopher Oshman, Bo Shi, Jen- Hau Cheng, George P. Peterson