Patents Assigned to Thermochem Recovery International, Inc.
  • Patent number: 9011561
    Abstract: A solids circulation system receives a gas stream containing char or other reacting solids from a first reactor. The solids circulation system includes a cyclone configured to receive the gas stream from the first reactor, a dipleg from the cyclone to a second reactor, and a riser from the second reactor which merges with the gas stream received by the cyclone. The second reactor has a dense fluid bed and converts the received materials to gaseous products. A conveying fluid transports a portion of the bed media from the second reactor through the riser to mix with the gas stream prior to cyclone entry. The bed media helps manipulate the solids that is received by the cyclone to facilitate flow of solids down the dipleg into the second reactor. The second reactor provides additional residence time, mixing and gas-solid contact for efficient conversion of char or reacting solids.
    Type: Grant
    Filed: November 4, 2011
    Date of Patent: April 21, 2015
    Assignee: Thermochem Recovery International, Inc.
    Inventors: Ravi Chandran, Jonathan A. Zenz, Dave G. Newport, Hamilton Sean Michael Whitney
  • Patent number: 8968433
    Abstract: A direct carbonaceous material to power generation system integrates one or more solid oxide fuel cells (SOFC) into a fluidized bed gasifier. The fuel cell anode is in direct contact with bed material so that the H2 and CO generated in the bed are oxidized to H2O and CO2 to create a push-pull or source-sink reaction environment. The SOFC is exothermic and supplies heat within a reaction chamber of the gasifier where the fluidized bed conducts an endothermic reaction. The products from the anode are the reactants for the reformer and vice versa. A lower bed in the reaction chamber may comprise engineered multi-function material which may incorporate one or more catalysts and reactant adsorbent sites to facilitate excellent heat and mass transfer and fluidization dynamics in fluidized beds. The catalyst is capable of cracking tars and reforming hydrocarbons.
    Type: Grant
    Filed: December 1, 2011
    Date of Patent: March 3, 2015
    Assignee: Thermochem Recovery International, Inc.
    Inventor: Ravi Chandran
  • Publication number: 20140252276
    Abstract: A system and method for processing unconditioned syngas first removes solids and semi-volatile organic compounds (SVOC), then removes volatile organic compounds (VOC), and then removes at least one sulfur containing compound from the syngas. Additional processing may be performed depending on such factors as the source of syngas being processed, the products, byproducts and intermediate products desired to be formed, captured or recycled and environmental considerations.
    Type: Application
    Filed: September 27, 2012
    Publication date: September 11, 2014
    Applicant: ThermoChem Recovery International, Inc.
    Inventors: Ravi Chandran, Daniel Michael Leo, Shawn Robert Freitas, Dave G. Newport, Hamilton Sean Michael Whitney, Daniel A. Burciaga
  • Patent number: 8721299
    Abstract: A piston member that includes a piston rod provided with a piston serves for reciprocating inside a cylinder barrel, the piston dividing the cylinder barrel chamber into a proximal cylinder barrel chamber having a proximal capped end opposite the piston and a distal cylinder barrel chamber having a distal cylinder barrel end opposite the piston. The piston member has at least one sealing ring or seat arranged inside the distal cylinder barrel chamber at the distal cylinder barrel end. Preferably three consecutive piston members are arranged to operate in a series in an apparatus for transporting coal powder to a gasifier. The movement of the pistons inside the cylinder barrels is controlled in relation to each other to transport apportioned batches of coal powder to a high pressure reactor.
    Type: Grant
    Filed: October 13, 2010
    Date of Patent: May 13, 2014
    Assignee: Thermochem Recovery International, Inc.
    Inventors: Thomas Koch, Peter Friehling
  • Patent number: 7842110
    Abstract: Various processes and systems are disclosed for converting carbonaceous materials into a product gas stream. For instance, the product gas stream may be endothermically converted to a gas through a steam reforming process. The present invention is directed to various methods and systems for increasing throughput and efficiency of the system. Further, the present invention is also directed to sulfur removal methods and systems from a gas stream.
    Type: Grant
    Filed: September 10, 2003
    Date of Patent: November 30, 2010
    Assignee: Thermochem Recovery International, Inc.
    Inventors: Momtaz N. Mansour, Ravi Chandran
  • Patent number: 7569086
    Abstract: A fluid bed reactor is configured to process a reactive material to form one or more products. The reactor includes a reaction vessel defining a compartment configured to receive the reactive material. A first cluster of heating conduits at least partially occupies the compartment and extends over a first vertical extent within the compartment. A second cluster of heating conduits partially occupies the compartment and extends over a second vertical extent within the compartment. The first cluster of heating conduits is vertically below the second cluster of heating conduits and spaced apart therefrom by a first separation distance. Feedstock inlets are configured to introduce the reactive material into a region that is vertically between the first and second clusters of heating conduits. The heating conduits in the first cluster have a first thickness while the heating conduits in the second cluster have a second thickness.
    Type: Grant
    Filed: April 24, 2006
    Date of Patent: August 4, 2009
    Assignee: ThermoChem Recovery International, Inc.
    Inventor: Ravi Chandran
  • Patent number: 7531014
    Abstract: A fluid bed reactor is configured to process a reactive material to form one or more products. The reactor includes a reaction vessel defining a compartment configured to receive the reactive material. Attached to the reaction vessel is at least one heat transfer module. Each heat transfer module includes a pulse combustor and an associated acoustic chamber. The pulse combustor has at least one tailpipe that terminates in its associated acoustic chamber. Flue gases exiting the tailpipe(s) pass from the acoustic chamber, through a wall separating the acoustic chamber from the reactor vessel and into heat transfer tubes that protrude into a compartment of the reactor vessel. Feedstock inlets are configured to introduce the reactive material into a region that is vertically between the first and second clusters of heat transfer tubes.
    Type: Grant
    Filed: May 8, 2006
    Date of Patent: May 12, 2009
    Assignee: Thermochem Recovery International, Inc.
    Inventor: Ravi Chandran
  • Publication number: 20070245629
    Abstract: A fluid bed reactor is configured to process a reactive material to form one or more products. The reactor includes a reaction vessel defining a compartment configured to receive the reactive material. Attached to the reaction vessel is at least one heat transfer module. Each heat transfer module includes a pulse combustor and an associated acoustic chamber. The pulse combustor has at least one tailpipe that terminates in its associated acoustic chamber. Flue gases exiting the tailpipe(s) pass from the acoustic chamber, through a wall separating the acoustic chamber from the reactor vessel and into heat transfer tubes that protrude into a compartment of the reactor vessel. Feedstock inlets are configured to introduce the reactive material into a region that is vertically between the first and second clusters of heat transfer tubes.
    Type: Application
    Filed: May 8, 2006
    Publication date: October 25, 2007
    Applicant: Thermochem Recovery International, Inc.
    Inventor: Ravi Chandran
  • Publication number: 20070245627
    Abstract: A fluid bed reactor is configured to process a reactive material to form one or more products. The reactor includes a reaction vessel defining a compartment configured to receive the reactive material. A first cluster of heating conduits at least partially occupies the compartment and extends over a first vertical extent within the compartment. A second cluster of heating conduits partially occupies the compartment and extends over a second vertical extent within the compartment. The first cluster of heating conduits is vertically below the second cluster of heating conduits and spaced apart therefrom by a first separation distance. Feedstock inlets are configured to introduce the reactive material into a region that is vertically between the first and second clusters of heating conduits. The heating conduits in the first cluster have a first thickness while the heating conduits in the second cluster have a second thickness.
    Type: Application
    Filed: April 24, 2006
    Publication date: October 25, 2007
    Applicant: Thermochem Recovery International, Inc.
    Inventor: Ravi Chandran
  • Publication number: 20070245628
    Abstract: A fluid bed reactor is configured to process a reactive material to form one or more products. The reactor includes a reaction vessel defining a compartment configured to receive the reactive material. Attached to the reaction vessel is at least one heat transfer module. Each heat transfer module includes a pulse combustor and an associated acoustic chamber. The pulse combustor has at least one tailpipe that terminates in its associated acoustic chamber. Flue gases exiting the tailpipe(s) pass from the acoustic chamber, through a wall separating the acoustic chamber from the reactor vessel and into heat transfer tubes that protrude into a compartment of the reactor vessel. Feedstock inlets are configured to introduce the reactive material into a region that is vertically between the first and second clusters of heat transfer tubes.
    Type: Application
    Filed: April 24, 2006
    Publication date: October 25, 2007
    Applicant: Thermochem Recovery International, Inc.
    Inventor: Ravi Chandran