Abstract: The present invention concerns a method for the removal of inorganic components such as potassium, sodium, chlorine, sulfur, phosphorus and heavy metals, from biomass of rural or forest or urban origin or even mixture of different origin biomasses, from low quality coals such as peat, lignite and sub-bituminous/bituminous coals, from urban/industrial origin residues/wastes, which are possible to include as much organic—>5% weight—as inorganic—<95% weight—charge and from sewage treatment plant sludges. The desired goal is achieved with the physicochemical treatment of the raw material. The method can also include the thermal treatment, which can precede or follow the physicochemical one. The application of the thermal treatment depends on the nature and the particular characteristics of each raw material as well as on the feasibility analysis of the whole process in order to determine the optimization point in each case.
Abstract: The present invention concerns a method for the removal of inorganic components such as potassium, sodium, chlorine, sulfur, phosphorus and heavy metals, from biomass of rural or forest or urban origin or even mixture of different origin biomasses, from low quality coals such as peat, lignite and sub-bituminous/bituminous coals, from urban/industrial origin residues/wastes, which are possible to include as much organic—>5% weight—as inorganic—<95% weight—charge and from sewage treatment plant sludges. The desired goal is achieved with the physicochemical treatment of the raw material. The method can also include the thermal treatment, which can precede or follow the physicochemical one. The application of the thermal treatment depends on the nature and the particular characteristics of each raw material as well as on the feasibility analysis of the whole process in order to determine the optimization point in each case.