Patents Assigned to THINSILICION CORPORATION
  • Publication number: 20100313935
    Abstract: A monolithically-integrated photovoltaic module is provided. The module includes an insulating substrate and a lower electrode above the substrate. The method also includes a lower stack of microcrystalline silicon layers above the lower electrode, an upper stack of amorphous silicon layers above the lower stack, and an upper electrode above the upper stack. The upper and lower stacks of silicon layers have different energy band gaps. The module also includes a built-in bypass diode vertically extending in the upper and lower stacks of silicon layers from the lower electrode to the upper electrode. The built-in bypass diode includes portions of the lower and upper stacks that have a greater crystalline portion than a remainder of the lower and upper stacks.
    Type: Application
    Filed: June 8, 2010
    Publication date: December 16, 2010
    Applicant: THINSILICION CORPORATION
    Inventors: Kevin Michael Coakley, Guleid Hussen, Jason Stephens, Kunal Girotra, Samuel Rosenthal
  • Publication number: 20100313942
    Abstract: A method of manufacturing a photovoltaic module is provided. The method includes providing an electrically insulating substrate and a lower electrode, depositing a lower stack of silicon layers above the lower electrode, and depositing an upper stack of silicon layers above the lower stack. The lower and upper stacks include N-I-P junctions. The lower stack has an energy band gap of at least 1.60 eV while the upper stack has an energy band gap of at least 1.80 eV. The method also includes providing an upper electrode above the upper stack. The lower and upper stacks convert incident light into an electric potential between the upper and lower electrodes with the lower and upper stacks converting different portions of the light into the electric potential based on wavelengths of the light.
    Type: Application
    Filed: June 8, 2010
    Publication date: December 16, 2010
    Applicant: THINSILICION CORPORATION
    Inventors: Kevin Michael Coakley, Guleid Hussen, Jason Stephens, Kunal Girotra, Samuel Rosenthal
  • Publication number: 20100313952
    Abstract: A monolithically-integrated photovoltaic module is provided. The module includes an electrically insulating substrate, a lower stack of microcrystalline silicon layers above the substrate, a middle stack of amorphous silicon layers above the lower stack, an upper stack of amorphous silicon layers above the middle stack, and a light transmissive cover layer above the upper stack. An energy band gap of each of the lower, middle and upper stacks differs from one another such that a different spectrum of incident light is absorbed by each of the lower, middle and upper stacks.
    Type: Application
    Filed: June 8, 2010
    Publication date: December 16, 2010
    Applicant: THINSILICION CORPORATION
    Inventors: Kevin Michael Coakley, Guleid Hussen, Jason Stephens, Kunal Girotra, Samuel Rosenthal
  • Publication number: 20100282314
    Abstract: A photovoltaic cell includes a substrate, a semiconductor layer stack, a reflective and conductive electrode layer, and a textured template layer. The semiconductor layer stack is disposed above the substrate. The electrode layer is located between the substrate and the semiconductor layer stack. The template layer is between the substrate and the electrode layer. The template layer includes an undulating upper surface that imparts a predetermined shape to the electrode layer. The electrode layer reflects light back into the semiconductor layer stack based on the predetermined shape of the electrode layer.
    Type: Application
    Filed: April 19, 2010
    Publication date: November 11, 2010
    Applicant: THINSILICION CORPORATION
    Inventors: Kevin Michael Coakley, Brad Stimson, Sam Rosenthal
  • Publication number: 20100078064
    Abstract: A solar module includes a substrate, a plurality of electrically interconnected solar cells, and an upper separation gap. The solar cells are provided above the substrate. At least one of the solar cells includes a reflective electrode, a silicon layer stack and a light transmissive electrode. The reflective electrode is provided above the substrate. The silicon layer stack includes an n-doped layer provided above the reflective electrode, an intrinsic layer provided above the n-doped layer and a p-doped layer provided above the intrinsic layer. The light transmissive electrode is provided above the silicon layer stack. The upper separation gap is provided between the cells. The upper separation gap electrically separates the light transmissive electrodes in the solar cells from one another such that the light transmissive electrode of one of the solar cells is electrically connected to the reflective electrode of another one of the solar cells.
    Type: Application
    Filed: September 29, 2009
    Publication date: April 1, 2010
    Applicant: THINSILICION CORPORATION
    Inventor: KEVIN MICHAEL COAKLEY