Abstract: The invention relates to an ophthalmological device (99) which provides suction flushing, having an aspiration function and an infusion function, as well as a replaceable cassette (1) for such a device. It comprises an aspiration conveyor device (52) for motor-driven discharge of liquid from a surgical instrument (29) into a waste container (56). According to the invention, it also comprises an infusion conveyor device (36) for motor-driven supply of an infusion medium from an infusion container (30) to said surgical instrument (29).
Abstract: The invention relates to a replaceable cartridge (1) for an ophthalmological apparatus (2), comprising at least one hard region as a housing and at least one soft region, the hard region and the soft region forming inner liquid channels of the replacement cartridge (1). The soft region embodies functional elements of the replacement cartridge (1), said functional elements comprising at least one pump device for pumping liquid into the liquid channels, a valve device for modifying a through-flow cross-section in at least one of the liquid channels, and a pressure-detecting device for determining a liquid pressure in at least one of the liquid channels. The pressure-detecting device comprises a pressure chamber which is connected to one of the liquid channels, and a flexible membrane which peripherally surrounds a coupling element.
Type:
Grant
Filed:
November 2, 2017
Date of Patent:
October 24, 2023
Assignee:
THIS AG
Inventors:
Thomas Köppel, Marco Zünd, Martin Christoph Heiss
Abstract: The invention relates to an interchangeable insert (1) for an ophthalmological medical device (99) for aspiration of fluid, such as for discharging fluid as part of suction flushing during an ophthalmo-surgical intervention, such as a cataract operation. According to the invention, this occurs by means of a fluid region (10) for receiving the fluid to be suctioned and a negative pressure region (20), to which a negative pressure can be applied. The fluid region (10) and the negative pressure region (20) are hermetically separated from each other by an at least partially flexible membrane (13).