Patents Assigned to Thyssenkrupp Steel AG
  • Patent number: 9249486
    Abstract: A profiled wire, of NACE grade, made of low-alloy carbon steel intended to be used in the offshore oil exploitation sector is provided. The profiled wire includes the following chemical composition, expressed in percentages by weight of the total mass: 0.75<% C<0.95; 0.30<% Mn<0.85; Cr?0.4%; V?0.16%; Si?1.40% and preferably ?0.15%; and optionally no more than 0.06% Al, no more than 0.1% Ni and no more than 0.1% Cu, the balance being iron and the inevitable impurities arising from smelting the metal in the liquid state.
    Type: Grant
    Filed: March 23, 2011
    Date of Patent: February 2, 2016
    Assignees: ArcelorMittal Wire France, Thyssenkrupp Steel AG
    Inventors: Sylvain Foissey, Christophe Bertout, Xavier Perroud
  • Patent number: 9200355
    Abstract: An austenitic steel sheet excellent in resistance to delayed cracking, the composition of said steel comprising, in weight: 0,35%<C<1,05%, 15%<Mn<26%, Si<3%, Al<0,050%, S<0,030%, P<0,080%, N<0,1%, at least one metallic element X chosen among vanadium, titanium, niobium, molybdenum, chromium: 0,050%<V<0,50%, 0,040%?Ti<0,50%, 0,070%<Nb<0,50%, 0,14%<Mo<2%, 0,070%<Cr<2% and optionally, one or several elements chosen among 0,0005%<B<0,010%, Ni<2%, Cu<5%, the remainder being iron and unavoidable impurities inherent to fabrication, including hydrogen, the quantity Xp of said at least one metallic element under the form of carbides, nitrides or carbonitrides being, in weight: 0,030%<VP<0,40%, 0,030%<Tip<0,50%, 0,040%<Nbp<0,40%, 0,14%<Mop<0,44%, 0,070%<Crp<0,6%, the hydrogen content Hmax designating the maximal hydrogen content that can be measured from a series of at least five specimens, and the quantity Xp, in weight, be
    Type: Grant
    Filed: July 6, 2007
    Date of Patent: December 1, 2015
    Assignees: ArcelorMittal France, Thyssenkrupp Steel AG
    Inventors: Colin Scott, Philippe Cugy, Christian Allely
  • Patent number: 8959973
    Abstract: A method for the production of a hollow section from a blank, wherein the blank is introduced between two coreless halves of a die which have a desired section shape and can be displaced relative to one another and the blank is formed into a slotted hollow section by a closing movement of the halves of the die, includes preventing edges of the blank from sliding ahead during the closing movement of the die. A device for the production of hollow sections, which device has two coreless halves of a die which are positioned displaceably relative to one another and optionally a base plate, the halves of the die having the desired section shape of the hollow section which is to be formed includes means which, when the coreless halves are closing, prevent edges of a blank from sliding ahead to produce a slotted hollow section.
    Type: Grant
    Filed: November 16, 2006
    Date of Patent: February 24, 2015
    Assignee: ThyssenKrupp Steel AG
    Inventors: Torsten Bröβke, Michael Brüggenbrock, Thomas Flehmig, Mohamed Tohfa
  • Patent number: 8815025
    Abstract: A high strength steel, including about 0.05 to about 0.25% of C, less than about 0.5% of Si, about 0.5 to about 3.0% of Mn, not more than about 0.06% of P, not more than about 0.01% of S, about 0.50 to about 3.0% of Sol. Al, not more than about 0.02% of N, about 0.1 to about 0.8% of Mo, about 0.02 to about 0.40% of Ti, and the balance of iron and unavoidable impurities, wherein the steel has a structure formed of at least three phases including a bainite phase, and a retained austenite phase in addition to a ferrite phase having a composite carbide containing Ti and Mo dispersed and precipitated therein, wherein the total volume of the ferrite phase and the bainite phase is not smaller than 80%, the volume of the bainite phase is about 5% to about 60%, and the volume of the retained austenite phase is about 3 to about 20%.
    Type: Grant
    Filed: November 3, 2006
    Date of Patent: August 26, 2014
    Assignees: JFE Steel Corporation, ThyssenKrupp Steel AG
    Inventors: Takeshi Yokota, Akio Kobayashi, Kazuhiro Seto, Yoshihiro Hosoya, Thomas Heller, Brigitte Hammer, Rolf Bode, Günter Stich
  • Patent number: 8652275
    Abstract: A process for melt dip coating a strip of high-tensile steel with alloy constituents including zinc and/or aluminum includes the following steps. The strip is heated in a continuous furnace initially in a reductive atmosphere to a temperature of approximately 650° C., at which the alloy constituents diffuse to the surface in small amounts. The surface, consisting predominantly of pure iron, is converted into an iron oxide layer by a short heat treatment at a temperature of up to 750° C. in a reaction chamber which is integrated in a continuous furnace and has an oxidizing atmosphere. In a subsequent annealing treatment at a higher temperature in a reductive atmosphere, this iron oxide layer prevents the alloy constituents from diffusing to the surface. In the reductive atmosphere, the iron oxide layer is converted into a pure iron layer to which the zinc and/or aluminum are applied in the molten bath with optimum adhesion.
    Type: Grant
    Filed: December 2, 2005
    Date of Patent: February 18, 2014
    Assignee: ThyssenKrupp Steel AG
    Inventors: Ronny Leuschner, Manfred Meurer, Wilhelm Warnecke, Sabine Zeizinger, Gernot Nothacker, Michael Ullmann, Norbert Schaffrath
  • Patent number: 8636854
    Abstract: A method for coating a flat steel product manufactured from a high strength steel with a metallic coating, wherein the flat steel product is initially subjected to a heat treatment, in order then, in the heated state, to be hot-dip galvanized with the metallic coating in a melting bath containing overall at least 85% zinc and/or aluminum. The heat treatment includes heating the steel product in a reducing atmosphere, followed by converting a surface of the flat product to an iron oxide layer by a heat treatment lasting 1 to 10 secs in an oxidizing atmosphere, followed by annealing in a reducing atmosphere over a period of time which is longer than the duration of the formation of the iron oxide layer such that the iron oxide layer is reduced at least on its surface to pure iron, followed by cooling the product to a melting bath temperature.
    Type: Grant
    Filed: April 26, 2006
    Date of Patent: January 28, 2014
    Assignee: ThyssenKrupp Steel AG
    Inventors: Ronny Leuschner, Manfred Meurer, Wilhelm Warnecke, Sabine Zeizinger, Gernot Nothacker, Michael Ullmann, Norbert Schaffrath
  • Patent number: 8481172
    Abstract: A flat steel product, and a method for its production, which is formed from a steel substrate, such as strip or sheet steel, and a zinc-based corrosion protection coating, applied to at least one side of the steel substrate, which contains (in wt. %) Mg: 0.25 to 2.5%, Al: 0.2 to 3.0%, Fe: ?4.0%, and optionally in total up to 0.8% of one or more elements of the group Pb, Bi, Cd, Ti, B, Si, Cu, Ni, Co, Cr, Mn, Sn and rare earths, remainder zinc and unavoidable impurities are described. The corrosion protection coating has an Al content of maximum 0.5 wt. % in an intermediate layer extending between a surface layer directly adjacent to the surface of the flat steel product and a border layer adjacent to the steel substrate and with a thickness amounting to at least 20% of the total thickness of the corrosion protection coating.
    Type: Grant
    Filed: May 15, 2007
    Date of Patent: July 9, 2013
    Assignee: ThyssenKrupp Steel AG
    Inventors: Wilhelm Warnecke, Manfred Meurer, Rudolf Schönenberg, Michael Keller, Alexander Elsner
  • Patent number: 8461484
    Abstract: A method for welding a first workpiece with a joining element, wherein the joining element and the first workpiece consist at least partially of a metal, includes moving the joining element relative to the first workpiece during welding and at the same time pressing the joining element against the first workpiece. This method for welding a joining element with a material permits a reliable firmly-bonded connection between joining element and workpiece, when the workpiece consists of a composite material or has low rigidity, and is achieved by generating an electrical current between workpiece and joining element during mechanical contact of the joining element with the first workpiece.
    Type: Grant
    Filed: August 13, 2009
    Date of Patent: June 11, 2013
    Assignee: ThyssenKrupp Steel AG
    Inventors: Burkhard Tetzlaff, Marco Queller, Peter Ohse, Achim Bandorski
  • Patent number: 8394213
    Abstract: A method for coating hot-rolled or cold-rolled steel strip containing 6-30 wt %. Mn with a metallic protective layer, includes annealing the steel strip at a temperature of 800-1100° C. under an annealing atmosphere containing nitrogen, water and hydrogen and then subjecting the steel strip to hot dip coating. The method provide an economical way of hot dip coating a high manganiferous sheet steel in that, in order to produce a metallic protective layer substantially free from oxidic sub-layers on the steel strip, the % H2O/% H2 ratio of the water content % H2O to the hydrogen content % H2 in the annealing atmosphere is adjusted as a function of the respective annealing temperature TG as follows: % H2O/% H2?8·10?15·TG3.529.
    Type: Grant
    Filed: August 20, 2007
    Date of Patent: March 12, 2013
    Assignee: ThyssenKrupp Steel AG
    Inventors: Manfred Meurer, Ronny Leuschner, Harald Hofmann
  • Patent number: 8350184
    Abstract: A laser beam welding head for the welding of metal parts and method of use include at least one beam path for a welding beam and means for the optical acquisition of the position of the welding seam at a first measuring position, wherein the means for the optical acquisition of the position of the welding seam allow arrangement of the first measuring position in the welding direction running ahead of the welding position of the welding beam, and, at least as a function of a lateral deviation of the welding seam from a reference position, generate a correction signal for the correction of the welding position of the welding beam, as well as a corresponding use of the laser beam welding head.
    Type: Grant
    Filed: January 22, 2007
    Date of Patent: January 8, 2013
    Assignee: ThyssenKrupp Steel AG
    Inventors: Friedrick Behr, Erwin Blumensaat, Christian Dornscheidt, Martin Koch, Jens Plha, Stefan Wischmann, Lars Ott, Ansgar Schäfer
  • Patent number: 8240184
    Abstract: A method for converting blanks by drawing in a tool with a ram, a die and a pressure pad wherein, converted blanks with high dimensional precision can be produced, includes feeding a blank with a plurality of bulges to the tool. In flange regions of the blank the pressure pad is moved in a first process step of the method into a first position, which corresponds to the height of the bulges of the flange region of the blank added to the blank thickness. In the first process step the blank is preformed in the tool using the ram and in a second process step the pressure pad and the ram are moved into the end positions, so that the blank is converted by the ram to the end form and the pressure pad smoothes the bulges of the flange regions of the blank.
    Type: Grant
    Filed: April 6, 2009
    Date of Patent: August 14, 2012
    Assignee: ThyssenKrupp Steel AG
    Inventors: Thomas Flehmig, Konstantinos Savvas
  • Publication number: 20120174752
    Abstract: A composite material with a ballistic protective effect having a first, outer layer made of a first steel alloy and at least one second layer which is arranged under the first layer and is made of a second steel alloy. The composite material with a ballistic protective effect allows for a reduction in the weight or the wall thicknesses of the composite material in comparison to conventional composite ballistic materials, by utilizing a first steel alloy of the first layer that has the following alloy constituents in percent by weight (% by weight): 0.06%?C?1.05%, 0.05%?Si?1.65%, 0.3%?Mn?2.65%, 0.015%?Al?1.55%; Cr?1.2%, Ti?0.13%, Mo?0.7%, Nb?0.1%, B?0.005%, P?0.08%, S?0.01%, Ni?4.0%, and V?0.05%, the remainder being Fe and inevitable impurities. The second layer of the composite material having a higher elongation than the first layer.
    Type: Application
    Filed: May 6, 2009
    Publication date: July 12, 2012
    Applicant: ThyssenKrupp Steel AG
    Inventors: Jens-Ulrik Becker, Harald Hofmann, Christian Hockling, Andreas Kern, Udo Schriever, Horst Walter Tamler, Hans-Joachim Tschersich
  • Publication number: 20120121927
    Abstract: A flat steel product provided with a coating system, which in the coated state possesses an optimized combination of corrosion resistance and welding capacity, includes a base layer formed from a steel and a corrosion protection system applied onto the base layer. The corrosion protection system comprises a metallic coating less than 3.5 ?m thick, formed from a first metallic layer applied onto the base layer and a second metallic layer applied onto the first metallic layer, wherein the second metallic layer has formed a metallic alloy with the first metallic layer. The corrosion protection system also comprises a plasma polymer layer applied onto the metallic coating.
    Type: Application
    Filed: December 27, 2011
    Publication date: May 17, 2012
    Applicant: ThyssenKrupp Steel AG
    Inventors: Krasimir Nikolov, Nicole Weiher, Bernd Schuhmacher
  • Patent number: 8151429
    Abstract: A method for producing a composite part is provided. The method includes a first and at least one second part, wherein the first part at least in part is made of a first metal and the second part at least in part is made of another metal that has a lower melting temperature than that of the first metal. Composite parts produced by the method are also provided. The method for producing composite parts which have an improved load-bearing capacity and yet low weight, is achieved by the fact that at least one breakthrough encompassing a breakthrough collar is introduced into the first part and the second part is non-positively and/or positively moulded onto the first part at least in the area of the breakthrough and the breakthrough collar by heating the second part and applying pressure to said second part.
    Type: Grant
    Filed: November 29, 2006
    Date of Patent: April 10, 2012
    Assignee: ThyssenKrupp Steel AG
    Inventors: Thomas Flehmig, Lothar Patberg
  • Patent number: 8088229
    Abstract: A method for producing high-quality grain oriented magnetic steel sheet utilizes a steel alloy with (in wt %) Si: 2.5-4.0%, C: 0.02-0.10%, Al: 0.01-0.065%, N: 0.003-0.015%. The method utilizes an operational sequence whose individual steps (secondary metallurgical treatment of the molten metal, continuous casting of the molten metal into a strand, dividing of the strand into thin slabs, heating of the thin slabs, continuous hot rolling of the thin slabs into hot strip, cooling of the hot strip, coiling of the hot strip, cold rolling of the hot strip into cold strip, recrystallization and decarburization annealing of the cold strip, application of an annealing separator, final annealing of the recrystallization and decarburization annealed cold strip to form a Goss texture) are harmonized with one another, so that a magnetic steel sheet with optimized electromagnetic properties is obtained using conventional apparatus.
    Type: Grant
    Filed: July 20, 2006
    Date of Patent: January 3, 2012
    Assignee: ThyssenKrupp Steel AG
    Inventors: Klaus Günther, Ludger Lahn, Andreas Ploch, Eberhard Sowka
  • Patent number: 8042368
    Abstract: To produce hollow profiles from sheet-metal blanks, the invention uses at least two process steps to form said blanks into a slit profile which is subsequently welded to produce the finished welded profile. For this purpose a mandrel is used which cooperates with a first tool part in the first step, and with a second tool part in the second step, such as to form a gap with the recess of each tool part into which a portion of the sheet-metal blank is guided. Shaping the sheet-metal blank in at least two steps means that a mandrel that is a self-contained component and can therefore be moved by a simple control device can be used to support the sheet-metal blank while the slit profile is being created. This considerably reduces the equipment needed to produce the hollow profile. Moreover, forming the sheet-metal blank into the slit profile in at least two steps also considerably improves the reliability with which this shaping takes place.
    Type: Grant
    Filed: August 20, 2005
    Date of Patent: October 25, 2011
    Assignee: ThyssenKrupp Steel AG
    Inventors: Michael Brüggenbrock, Thomas Flehmig, Wladimir Rituper, Mohamed Tohfa
  • Patent number: 8038806
    Abstract: A method, which makes it possible to economically produce high-quality grain oriented magnetic steel sheet, utilizes a steel alloy with (in wt %) Si: 2.5-4.0%, C: 0.01-0.10 %, Mn: 0.02-0.50%, S and Se in contents, whose total amounts to 0.005-0.04%. The method utilizes an operational sequence whose individual routine steps (secondary metallurgical treatment of the molten metal in a vacuum-or ladle facility, continuous casting of the molten metal into a strand, dividing of the strand, heating in a facility standing inline, continuous hot rolling in a multi-stand hot rolling mill standing inline, cooling, coiling, cold rolling, recrystallization and decarburization annealing, application of an annealing separator, final annealing to form a Goss texture) are harmonized with one another, so that a magnetic steel sheet with optimized electromagnetic properties is obtained using conventional apparatus.
    Type: Grant
    Filed: July 20, 2006
    Date of Patent: October 18, 2011
    Assignee: ThyssenKrupp Steel AG
    Inventors: Klaus Günther, Ludger Lahn, Andreas Ploch, Eberhard Sowka
  • Patent number: 8025727
    Abstract: In order to also be able to economically use iron ore dust which is created by the extraction and preparation of iron ore and has not been usable until now, the invention proposes an agglomerated stone comprising (in wt. %) 6-15% of a cement binding agent, up to 20% of a carbon carrier, up to 20% of residual and recyclable substances, optionally up to 10% of a coagulation and solidification accelerator and the remainder consisting of iron ore in a stone format in the form of particles having a particle size of less than 3 mm as well as possessing after three days an initial strength of at least 5 N/mm2 and after 28 days a cold compression strength of at least 20 N/mm2. As a result of the particular hardness St and form stability thereof even at high temperatures T, agglomerated stones according to the invention are especially suitable for use in shaft, corex or blast furnaces. The invention also relates to a method for producing agglomerated stones according to the invention.
    Type: Grant
    Filed: May 25, 2005
    Date of Patent: September 27, 2011
    Assignee: ThyssenKrupp Steel AG
    Inventors: Horst Mittelstädt, Stefan Wienströer, Reinhard Fusenig, Ronald Erdmann, Klaus Kesseler, Matthias Rohmann
  • Publication number: 20110200739
    Abstract: A method and a device for determining a quality of a metallic surface of a metallic substrate, for example a steel or steel alloy substrate, are provided. The device includes a mould, a sheet holder and a die, with which the metallic substrate is formed to produce a drawn test surface. The method and device are used to test the quality of the metallic surface of a metallic coating with a view to a later utilization, especially with a view to a later forming, wherein the metallic substrate is formed at least in-an area of a test surface, wherein a main and an additional shape change of the metallic substrate in the area of the test surface assume predetermined values that are related to the later utilization of the metallic substrate, and wherein the quality of the metallic surface is tested on the test surface after forming.
    Type: Application
    Filed: April 21, 2011
    Publication date: August 18, 2011
    Applicant: ThyssenKrupp Steel AG
    Inventors: Andreas Birkenstock, Peter Heidbüchel, Michael Linnepe
  • Publication number: 20110165430
    Abstract: With the invention a metallic flat product can be systematically made available with such a fine, stochastic or quasi-stochastic surface texture that after a typical automotive paint application it is only minimally perceptible, if at all, by the human eye. At the same time, in the case of a surface topography constituted according to the invention, the transition between the peak plateaus and the valleys takes place via steep flanks. In this way, it is achieved that the morphology of the sheet metal surface is practically independent of the actual depth of the valleys. As a result therefore, the morphology of the sheet metal surface of a metallic flat product according to the invention is also independent of the skin-pass rate, which is obtained when the fine metal texture is produced by skin-pass rolling.
    Type: Application
    Filed: June 20, 2008
    Publication date: July 7, 2011
    Applicants: ThyssenKrupp Steel AG, Walzen-Service-Center GmbH
    Inventors: Bodo Hesse, Karl-Heinz Kopplin, Folkert Schulze-Kraasch, Udo Schulokat, Hans-Gerd Weyen, Ingo Rogner, Torsten Herles, Roland Meier