Patents Assigned to Thyssenkrupp Uhde GmbH
  • Publication number: 20140047732
    Abstract: An apparatus (1) and method for drying polymer powders is described. The apparatus has an inlet (2) and an outlet (3) for the polymer powder, heat registers (5) installed in the interior space (4) and lines (7) for a heated gas (6a) for drying the polymer powder. The lines open into the interior space (4) and are connected to heat exchangers (9) for heating gas (6). The heat exchangers (9) are connected to a plant for the preparation of 1,2-dichloroethane (15) and/or for the preparation of vinyl chloride from 1,2-dichloroethane so that thermal energy from the plant can be utilized for heating the gas (6). The method comprises treatment of a polymer powder with a heated gas (6a) in the drying apparatus (1).
    Type: Application
    Filed: February 23, 2012
    Publication date: February 20, 2014
    Applicants: VINNOLIT GMBH & CO. KG, THYSSENKRUPP UHDE GMBH
    Inventors: Michael Benje, Peter Kammerhofer
  • Patent number: 8652372
    Abstract: Coal compacts which are suitable for coking in coke oven chambers are prepared by pressing and compacting coal in a pressing device having a design which shapes the surface of the coal compacts to provide higher surface area. Already compacted coal blocks can be pressed to generate the surface shape. The resulting coal compacts exhibit significantly improved properties during the coking process, resulting in improved gas and heat exchange. A device for compacting coal preferably contains a plate provided with shaping elements on the pressing surface.
    Type: Grant
    Filed: February 19, 2010
    Date of Patent: February 18, 2014
    Assignee: Thyssenkrupp Uhde GmbH
    Inventor: Ronald Kim
  • Patent number: 8648227
    Abstract: The invention relates to a method for extracting styrene, having a polymerization quality, from pyrolysis benzol fractions containing styrene by means of extractive distillation. The pyrolysis benzol fraction is separated in a separating wall column in a C8-core fraction, a C7 fraction and a C9+-fraction, the obtained C8-core fraction is subjected to selective hydrogenation of the phenylacetylene C8H6 which it contains. Subsequently, the obtained C8-fraction undergoes extractive-distillative separation in a styrene fraction and a fraction which is low in styrene.
    Type: Grant
    Filed: May 24, 2006
    Date of Patent: February 11, 2014
    Assignee: Thyssenkrupp Uhde GmbH
    Inventor: Helmut Gehrke
  • Patent number: 8646664
    Abstract: The invention relates to a method and a device for the metered removal of a fine to coarse-grained solid matter or a solid matter mixture from a storage container, comprising a device for forming a fluidized bed in the discharge region or in a metering chamber of the metering container, wherein fluidization that is as optimal as possible is to be created in the lower region of such a receiving or metering container while avoiding any additional systems, mechanical elements, or extensive installations. This is achieved according to the method in that a gas is additionally introduced in the region of the metering chamber bottom for forming a fluidized bed that loosens the solid matter, and a gas is introduced via swirl nozzles for bringing about the rotation of the fluidized bed.
    Type: Grant
    Filed: January 23, 2009
    Date of Patent: February 11, 2014
    Assignee: ThyssenKrupp Uhde GmbH
    Inventors: Stefan Hamel, Eberhard Kuske
  • Publication number: 20140001408
    Abstract: A method of starting up an autothermal reactor for the production of synthesis gas by reforming of hydrocarbon-containing feed gases in a reaction chamber in which oxidation reactions and reforming reactions are carried out, by feeding a hydrocarbon containing feed gas, steam and an oxidant.
    Type: Application
    Filed: March 13, 2012
    Publication date: January 2, 2014
    Applicant: THYSSENKRUPP UHDE GMBH
    Inventors: Joachim Johanning, Bernd Keil
  • Patent number: 8617423
    Abstract: An H2- and CO-containing synthesis gas is made by separating coke-oven gas from a coke-oven process into hydrogen and a residual gas stream containing hydrocarbons and obtaining a CO-rich synthesis-gas stream from a top gas of a blast furnace. The hydrogen separated from the coke-oven gas is fed into the CO-rich synthesis gas stream obtained from the top gas of a blast furnace to make the synthesis gas, and the hydrocarbon-containing residual gas stream is fed into the blast furnace as feedstock.
    Type: Grant
    Filed: May 6, 2010
    Date of Patent: December 31, 2013
    Assignee: Thyssenkrupp Uhde GmbH
    Inventor: Johannes Menzel
  • Patent number: 8613875
    Abstract: A method for production of coke chamber-compatible coal briquettes. Horizontally feeding coal into a pressing mold formed from a plate having two parallel terminating walls, which are stationary with respect to the direction of movement of the plate, and a terminating stop wall disposed transversely to the direction of movement of the plate. The side of the pressing mold open to coal is closed by a stationary wall, and the plate is locked in the horizontal direction for the pressing operation. The coal is compacted by a tamping device, having a vertically acting force onto pressing mold to produce a coal briquette. After completion of the coal briquette, the plate is moved horizontally in the longitudinal direction so that the space in the pressing mold becoming free in the horizontal direction is used for producing the next coal briquette. A device for carrying out the method is also disclosed.
    Type: Grant
    Filed: October 30, 2010
    Date of Patent: December 24, 2013
    Assignee: Thyssenkrupp Uhde Gmbh
    Inventor: Franz-Josef Schuecker
  • Publication number: 20130324642
    Abstract: A curable compound of a formulation, a method for producing a polymer material from the curable compound, the resulting polymer material, and agents produced from the polymer material.
    Type: Application
    Filed: January 25, 2012
    Publication date: December 5, 2013
    Applicant: THYSSENKRUPP UHDE GMBH
    Inventor: Dieter Rossberg
  • Publication number: 20130313101
    Abstract: An adjustable chargehole closure for adjusting the closure cover of a charging hole in a coking oven chamber. The adjustable chargehole closure has as an inner frame for a closure cover, and the frame can be rotated both with respect to the closure cover and with respect to an outer frame, designed asymmetrically with respect to a vertical plane, so that the closure cover is displaced along a longitudinal axis when the inner frame is rotated in the horizontal plane. The position of the charging hole opening and the closure cover present therein on the ceiling of a coking oven chamber can thereby be changed without requiring construction measures on the ceiling of a coking oven chamber. The capability is in particular advantageous in order to match the position of the charging hole cover to the precise charging position of the charging machine.
    Type: Application
    Filed: February 8, 2012
    Publication date: November 28, 2013
    Applicant: THYSSENKRUPP UHDE GmbH
    Inventors: Manfred Friedrichs, Helmut Dohle
  • Patent number: 8591846
    Abstract: A method and apparatus for processing a sour gas rich in carbon dioxide in a Claus process, so sulfur compounds are removed by a selective solvent in a gas scrubbing process. Sulfur components and carbon dioxide, are separated into at least two sour gas fractions, wherein at least one sour gas fraction having a higher content of sulfur components is obtained, wherein the fraction having the highest hydrogen sulfide content is introduced in the thermal reaction stage of the Claus furnace with a gas containing oxygen by means of a burner. The sulfur is converted to sulfur dioxide in the thermal reaction stage of the Claus furnace and exhaust gases are discharged into the closed Claus reaction chamber behind the burner. The remaining sour gas fractions stripped of sulfur components are fed to the Claus reaction chamber and are mixed with the combustion gases leaving the burner.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: November 26, 2013
    Assignee: Thyssenkrupp UHDE GmbH
    Inventor: Johannes Menzel
  • Publication number: 20130306462
    Abstract: A method and a device for breaking up a fresh and hot coke charge in a receiving trough having mobile plate segments, the coke charge being conveyed to a quenching tower in the receiving trough of a flatbed transport car in which the coke charge is cooled down to ambient temperatures by mobile plate segments so that the coke structure is broken up and crevice-type cavities are formed in the compacted coke charge. These crevice-type cavities then allow an increased amount of water to flow into the interior of the coke charge during the subsequent quenching step, resulting in a high profitability of the method, a higher coke quality and a reduced burden on the environment due to reduced quenching times and lower water consumption. A device for carrying out the method is also disclosed.
    Type: Application
    Filed: December 8, 2011
    Publication date: November 21, 2013
    Applicant: THYSSENKRUPP UHDE GMBH
    Inventors: Ronald Kim, Franz-Josef Schuecker
  • Patent number: 8568676
    Abstract: A process for workup of an industrial carbon dioxide-rich gas to be freed of sulfur components, in which an industrial gas to be freed of sulfur components is purified by a gas scrubbing, and the laden solvent is freed of carbon dioxide and hydrogen sulfide by a regeneration to obtain at least one acid gas fraction having a relatively high content of sulfur components, and the fraction with the highest hydrogen sulfide (H2S) content is supplied to a Claus plant with downstream Claus process gas hydrogenation, and at least one carbon dioxide-laden, low-hydrogen sulfide acid gas fraction from the regeneration device, which has a reduced sulfur content compared to the fraction with the highest hydrogen sulfide (H2S) content, is combined with the hydrogenated Claus process gas to give a combined process gas stream, which is supplied to further processing or to recycling into the process.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: October 29, 2013
    Assignee: Thyssenkrupp Uhde GmbH
    Inventor: Johannes Menzel
  • Patent number: 8562698
    Abstract: The invention relates to a device for producing a crude gas containing CO or H2 by gasification of an ash-containing fuel with oxygen-containing gas at temperatures above the fusion temperature of the ash in a gasification reactor and with a connected gas cooling chamber and a tapered connecting channel running from one chamber to the other. The aim of the invention is avoiding known problems and reducing the amount of fly ash and the amount of ungasified fuel, wherein a weak eddy is achieved in the inlet to the subsequent apparatuses in order to avoid deposits there with a very compact device, wherein the risk of solidification of the slag in the outlet is also avoided. The aim is achieved, wherein in the tapered connection channel (5) eddy reducing or eliminating wall surfaces (6) running over only a part of the cross-section of the connection channel are provided.
    Type: Grant
    Filed: February 27, 2009
    Date of Patent: October 22, 2013
    Assignee: ThyssenKrupp Uhde GmbH
    Inventor: Johannes Kowoll
  • Publication number: 20130270101
    Abstract: A strain-free stationary furnace door actuator for a coke furnace battery of the “non-recovery” or “heat-recovery” type, by way of which vertical opening of the coke furnace chamber doors is possible without the use of a coke furnace operating machine, wherein the deviations of the tension elements of the furnace door actuator from the intended arrangements, which result from strain of the transmitting devices, and undesired increases in tension force, which result from differences in the adhesion forces of the coke furnace chamber doors during closure, are avoided by the use of low-strain transmitting devices and tension elements. A method for the strain-free, stationary actuation of the door of a coke furnace battery of the “heat-recovery” type is also disclosed. The method uses rigid tension elements and low-strain transmitting devices for automatically opening and closing coke furnace chamber doors.
    Type: Application
    Filed: October 20, 2011
    Publication date: October 17, 2013
    Applicant: THYSSENKRUPP UHDE GMBH
    Inventor: Ralf Knoch
  • Patent number: 8552229
    Abstract: With a method for utilization of the reaction heat that occurs in the production of 1,2-dichloroethane from ethylene, by reaction with oxygen and hydrochloride (oxychlorination), in a fluidized bed reactor, with dissipation of this reaction heat through cooling pipe bundles situated within the reactor, positioned in the fluidized bed, utilization of the heat is supposed to be improved, while simultaneously reducing the size of the corresponding system elements. This is achieved in that part of the reaction heat is dissipated by heating boiler feed water, whereby the heated boiler feed water is used to heat heat sinks in the production process.
    Type: Grant
    Filed: September 2, 2009
    Date of Patent: October 8, 2013
    Assignees: ThyssenKrupp Uhde GmbH, Vinnolit GmbH & Co. KG
    Inventors: Ulrike Gnabs, Michael Benje, Walter Kern
  • Patent number: 8545793
    Abstract: A device for condensing, separating, and storing sulfur in a Claus plant. having a Claus furnace, waste heat boiler, and Claus reactor. Plant parts are supported on a floor or comparable device, and an immersion chamber is provided below the Claus plant and optionally also below a device arranged upstream for gas scrubbing. The immersion chamber receives the sulfur in a siphoning manner, wherein the excess sulfur flows at least 4.00 meters deeper from the immersion chamber into a ground-level container in which the immersion chamber is arranged. The invention further relates to a method, by means of which liquid sulfur is conducted into an immersion chamber, wherein the immersion chamber is arranged at a height level below the waste heat boiler and the Claus reactor so that the liquid sulfur reaches the immersion chamber without further pumping and overcomes a height difference of at least 4.00 meters.
    Type: Grant
    Filed: March 3, 2011
    Date of Patent: October 1, 2013
    Assignee: Thyssenkrupp UHDE GmbH
    Inventor: Holger Thielert
  • Patent number: 8540803
    Abstract: A method and apparatus for drying a natural gas or an industrial gas that contains acidic gas components, wherein gas drying is followed by the removal of the acidic gas components from the dried gas. The same physical solvent is used for both of the process steps of gas drying and of acidic gas removal. The gas to be dried is brought into contact with the physical solvent, which absorbs most of the water contained in the gas. The physical solvent, loaded with water, is transferred into a solvent regenerating device to be heated where the water contained in the solvent is stripped from the solvent in the countercurrent by acidic gas that is removed from the dried useful gas during the acidic gas absorption. The acidic gas being released again in the acidic gas solvent regenerating device, stripped from the solvent, and discharged from the solvent regenerating device.
    Type: Grant
    Filed: September 22, 2010
    Date of Patent: September 24, 2013
    Assignee: ThyssenKrupp Uhde GmbH
    Inventor: Johannes Menzel
  • Publication number: 20130220373
    Abstract: A method for the automatic removal of carbon deposits from the oven chambers and flow channels of non-recovery and heat-recovery coke ovens, where a coke oven battery, composed typically of a plurality of adjacently arrayed coke oven chambers, is utilized for the cyclical coking of coal, and where an air metering device which operates with superatmospheric pressure is used in order to remove, by combustion, carbon deposits in the flow cross-sections of the oven system and thereby to counteract a reduction in oven performance. An apparatus with which this method can be performed is also disclosed, this apparatus being integrated into the coke oven battery and at least one coke oven chamber wall, allowing the carbon deposits to be removed during operation without a change in any arrangement.
    Type: Application
    Filed: August 16, 2011
    Publication date: August 29, 2013
    Applicant: THYSSENKRUPP UHDE GmbH
    Inventor: Ronald Kim
  • Patent number: 8518365
    Abstract: The invention relates to a method and an installation for producing sulfuric acid. First of all, a product gas flow (5) containing sulfur dioxide is produced. The product gas flow (5) is supplied to a reaction chamber (1). A catalyst (3) is located in the reaction chamber (1). In the presence of the catalyst sulfur dioxide reacts to form sulfur trioxide. In further parts of the installation the resulting sulfur trioxide is converted to sulfuric acid. According to the invention, an oxidizing gas flow (6) is supplied to the reaction chamber (1) alternately with the product gas flow (5).
    Type: Grant
    Filed: July 12, 2010
    Date of Patent: August 27, 2013
    Assignee: ThyssenKrupp Uhde GmbH
    Inventors: Jan Schoeneberger, Holger Thielert
  • Publication number: 20130213489
    Abstract: A method for producing process vapor and boiler feed steam in a heatable reforming reactor for producing synthesis gas. The sensible heat of a synthesis gas produced from hydrocarbons and steam can be used so that two types of vapor are produced during the heating and evaporation of boiler feed water and process condensate. The method also includes a conversion of the carbon monoxide contained in the synthesis gas. The method includes an optional heating of the boiler feed water using the flue gas from the heating of the reforming reactor. The sensible heat of the synthesis gas and of the flue gas originating from the heating can be used more efficiently. The disadvantages from the flue gas heating, which are caused by the fluctuating heat supply in the flue gas duct, are avoided. A system for practicing the method is also disclosed.
    Type: Application
    Filed: August 20, 2011
    Publication date: August 22, 2013
    Applicant: THYSSENKRUPP UHDE GMBH
    Inventors: Thilo Von Trotha, Jan Heinrich