Patents Assigned to Tissue Genesis, Inc.
  • Patent number: 11584912
    Abstract: The present invention provides automated devices for use in supporting various cell therapies and tissue engineering methods. The present invention provides an automated cell separation apparatus capable of separating cells from a tissue sample for use in cell therapies and/or tissue engineering. The cell separation apparatus can be used in combination with complementary devices such as cell collection device and/or a sodding apparatus to support various therapies. The automated apparatus includes media and tissue dissociating chemical reservoirs, filters, a cell separator and a perfusion flow loop through a graft chamber which supports a graft substrate or other endovascular device. The present invention further provides methods for using the tissue grafts and cell samples prepared by the devices described herein in a multitude of therapies including revascularization, regeneration and reconstruction of tissues and organs, as well as treatment and prevention of diseases.
    Type: Grant
    Filed: September 28, 2015
    Date of Patent: February 21, 2023
    Assignee: TISSUE GENESIS, INC
    Inventors: Gregory D. Ariff, Thomas Cannon, Jennifer L. Case, Christian L. Haller, Paul Kosnik, Charles P. Luddy, Craig A. Mauch, Erik Vossman, Stuart K. Williams
  • Publication number: 20200024568
    Abstract: The present invention provides automated devices for use in supporting various cell therapies and tissue engineering methods. The present invention provides an automated cell separation apparatus capable of separating cells from a tissue sample for use in cell therapies and/or tissue engineering. The cell separation apparatus can be used in combination with complementary devices such as cell collection device and/or a sodding apparatus to support various therapies. The automated apparatus includes media and tissue dissociating chemical reservoirs, filters, a cell separator and a perfusion flow loop through a graft chamber which supports a graft substrate or other endovascular device. The present invention further provides methods for using the tissue grafts and cell samples prepared by the devices described herein in a multitude of therapies including revascularization, regeneration and reconstruction of tissues and organs, as well as treatment and prevention of diseases.
    Type: Application
    Filed: September 28, 2015
    Publication date: January 23, 2020
    Applicant: Tissue Genesis, Inc.
    Inventors: Gregory D. Ariff, Thomas Cannon, Jennifer L. Case, Christian L. Haller, Paul Kosnik, Charles P. Luddy, Craig A. Mauch, Erik Vossman, Stuart K. Williams
  • Patent number: 9144583
    Abstract: The present invention provides automated devices for use in supporting various cell therapies and tissue engineering methods. The present invention provides an automated cell separation apparatus capable of separating cells from a tissue sample for use in cell therapies and/or tissue engineering. The cell separation apparatus can be used in combination with complementary devices such as cell collection device and/or a sodding apparatus to support various therapies. The automated apparatus includes media and tissue dissociating chemical reservoirs, filters, a cell separator and a perfusion flow loop through a graft chamber which supports a graft substrate or other endovascular device. The present invention further provides methods for using the tissue grafts and cell samples prepared by the devices described herein in a multitude of therapies including revascularization, regeneration and reconstruction of tissues and organs, as well as treatment and prevention of diseases.
    Type: Grant
    Filed: April 23, 2007
    Date of Patent: September 29, 2015
    Assignee: Tissue Genesis, Inc.
    Inventors: Gregory D. Ariff, Thomas Cannon, Jennifer L. Case, Christian L. Haller, Paul Kosnik, Charles P. Luddy, Craig A. Mauch, Erik Vossman, Stuart K. Williams
  • Publication number: 20140207103
    Abstract: Devices and methods are provided for processing adipose tissue with a hand-held device. This device may include a processing chamber, a cannula, a vacuum source, a digestion area, and a product cell concentration chamber.
    Type: Application
    Filed: March 20, 2014
    Publication date: July 24, 2014
    Applicant: Tissue Genesis, Inc.
    Inventors: Rolf Wolters, Anthony Yang, Josh Nelson, Stuart K. Williams
  • Patent number: 8727965
    Abstract: The present invention generally relates to methods, compositions and uses thereof for enhancing vascularization of a tissue or cell transplant for transplantation into a subject. In particular, one aspect of the present invention provides methods and compositions comprising the use of a population of stromal vascular fraction (SVF) cells to encapsulate or surround a tissue or cell transplant to enhance vascularization of the tissue or cell transplant. Another aspect of the present invention provides methods and compositions for enhancing vascularization of a tissue or cell transplant by combining a population of SVF cells with a tissue or cell transplant to form a transplant mixed with SVF cells.
    Type: Grant
    Filed: March 5, 2010
    Date of Patent: May 20, 2014
    Assignee: Tissue Genesis, Inc.
    Inventors: Stuart K Williams, Hyun Joon Paek, Erik Vossman
  • Publication number: 20140081237
    Abstract: Devices and methods are provided for aspirating adipose tissue with a portable device. This device may include a processing chamber, a cannula, a vacuum source, a filter or screen for separating connective tissue strands from adipose tissue, a digestion area, and a product cell concentration chamber.
    Type: Application
    Filed: March 15, 2013
    Publication date: March 20, 2014
    Applicant: TISSUE GENESIS, INC.
    Inventors: Rolf Wolters, Anthony Yang, Josh Nelson, Stuart K. Williams
  • Publication number: 20140004086
    Abstract: Cell aggregate forming chambers are described, suitable for automated loading and unloading, where the airtight chamber contains a mold with a plurality of cavities, where there is an inlet and an outlet for cells, and where air is filtered before it comes into the chamber. Method of using the chamber include injecting cells into the chamber, providing conditions where the cells may grow to form cell aggregates, and extracting the cell aggregates through a cell outlet.
    Type: Application
    Filed: March 15, 2013
    Publication date: January 2, 2014
    Applicant: Tissue Genesis Inc.
    Inventor: Hyun Joon Peak
  • Patent number: 8067234
    Abstract: Methods are provided for isolating adipose derived stromal cells from an animal by extracting adipose tissue from the patient, dissecting the tissue, dissociating the tissue into a cell suspension, removing the adipocytes, exposing the cell suspension to red cell lysis buffer, and isolating adipose derived stromal cells.
    Type: Grant
    Filed: September 29, 2009
    Date of Patent: November 29, 2011
    Assignee: Tissue Genesis, Inc.
    Inventors: Keith L. March, Jalees Rehman
  • Publication number: 20110218396
    Abstract: The present invention generally relates to methods, compositions and uses thereof for enhancing vascularization of a tissue or cell transplant for transplantation into a subject. In particular, one aspect of the present invention provides methods and compositions comprising the use of a population of stromal vascular fraction (SVF) cells to encapsulate or surround a tissue or cell transplant to enhance vascularization of the tissue or cell transplant. Another aspect of the present invention provides methods and compositions for enhancing vascularization of a tissue or cell transplant by combining a population of SVF cells with a tissue or cell transplant to form a transplant mixed with SVF cells.
    Type: Application
    Filed: March 5, 2010
    Publication date: September 8, 2011
    Applicant: TISSUE GENESIS, INC.
    Inventors: Stuart K. Williams, Hyun Joon Paek, Erik Vossman
  • Patent number: 7906323
    Abstract: The present invention provides a feedback controlled bioculture platform for use as a precision cell biology research tool and for clinical cell growth and maintenance applications. The system provides individual closed-loop flowpath cartridges, with integrated, aseptic sampling and routing to collection vials or analysis systems. The system can operate in a standard laboratory or other incubator for provision of requisite gas and thermal environment. System cartridges are modular and can be operated independently or under a unified system controlling architecture, and provide for scale-up production of cell and cell products for research and clinical applications. Multiple replicates of the flowpath cartridges allow for individual, yet replicate cell culture growth and multiples of the experiment models that can be varied according to the experiment design, or modulated to desired cell development of cell culture end-points.
    Type: Grant
    Filed: February 24, 2005
    Date of Patent: March 15, 2011
    Assignee: Tissue Genesis, Inc.
    Inventors: Thomas F. Cannon, Laura K. Cohn, Peter D. Quinn, Paul Kosnik
  • Publication number: 20110027239
    Abstract: The present invention generally relates to use of adult Adipose-derived stromal cells (ASC) and genetically engineered ASC for the treatment of cancer. In particular, the present invention generally relates, in part to a method for treating a subject with cancer comprising administering to the subject a composition comprising engineered ASCs which have been modified to express a gene encoding at least one anti-cancer agent. In some embodiments, an anti-cancer agent is a pro-apoptotic agent. In some embodiments an anti-cancer agent is an agent which inhibits the expression of an oncogene.
    Type: Application
    Filed: July 29, 2009
    Publication date: February 3, 2011
    Applicant: TISSUE GENESIS, INC.
    Inventor: Hyun Joon Paek
  • Publication number: 20080058763
    Abstract: A cell delivery system and method for delivering cells locally to a tissue, body cavity, or joint is described. The cell delivery system comprises a catheter configured to deliver stem cells in a pressure controlled manner. The catheter may comprise an inner bladder and an outer perforated bladder. The inner bladder may be expanded through the use of a pressure conduit in order to deploy a stent. Cells, such as endothelial cells derived from adipose tissue, may be introduced between the inner and outer bladder. The inner bladder may be further expanded in order to exert pressure on the outer perforated bladder to advance the stems cells though the apertures of the outer bladder. The inner bladder may remain pressurized to hold the outer bladder against the vessel wall, thereby directing the stem cells to specific target sites. The system may be used to deliver stem cells with or without other therapeutic agents. The system may be used with or without a stent.
    Type: Application
    Filed: August 29, 2007
    Publication date: March 6, 2008
    Applicant: Tissue Genesis, Inc.
    Inventors: Eugene Boland, Stuart Williams, Paul Kosnik