Abstract: The present invention provides a method of manufacturing of an electrostatic self-assembled Silicon/rGO/carbon nanofibers composite, the method including: (a) obtaining a Si@APTES solution by adding predetermined Si nanoparticles to the piranha solution, and stirring, filtering, washing and drying, and then, dispersing the dried Si nanoparticles in deionized water, by adding APTES, and then stirring; (b) obtaining a Si@N-doped GO dispersion by mixing a mixture with the addition of urea (CH4N2O) to the GO solution and the prepared Si@APTES in step (a) in an ethanol aqueous solution; (c) obtaining a Si@N-doped GO/CNF composite by adding a predetermined CNF to the prepared Si@N-doped GO dispersion in step (b) and stirring it; and (d) obtaining a thermally reduced Si@N-doped rGO/CNF composite through a heat treatment process to the prepared Si@N-doped GO/CNF composite in step (c).
Abstract: The present invention provides a method of manufacturing of an electrostatic self-assembled Silicon/rGO/carbon nanofibers composite, the method including: (a) obtaining a Si@APTES solution by adding predetermined Si nanoparticles to the piranha solution, and stirring, filtering, washing and drying, and then, dispersing the dried Si nanoparticles in deionized water, by adding APTES, and then stirring; (b) obtaining a Si@N-doped GO dispersion by mixing a mixture with the addition of urea (CH4N2O) to the GO solution and the prepared Si@APTES in step (a) in an ethanol aqueous solution; (c) obtaining a Si@N-doped GO/CNF composite by adding a predetermined CNF to the prepared Si@N-doped GO dispersion in step (b) and stirring it; and (d) obtaining a thermally reduced Si@N-doped rGO/CNF composite through a heat treatment process to the prepared Si@N-doped GO/CNF composite in step (c).