Patents Assigned to Tokai University Educational System
  • Publication number: 20250090611
    Abstract: It is an object of the present invention to provide a means capable of appropriately regulating differentiation of T cells, in order to avoid overactivation of T cells after stimulation of the T cells with superantigens or the like and the subsequent decrease in the immune functions (exhaustion of the immune system). The present invention relates to a T cell differentiation-regulating agent, comprising, as an active ingredient, an algal body of microalgae belonging to the genus Coccomyxa, a dry powder thereof, or an extract thereof.
    Type: Application
    Filed: November 10, 2022
    Publication date: March 20, 2025
    Applicants: KJ BIO CO., LTD., Tokai University Educational System
    Inventors: Hitoshi KUNO, Akiko KANNO, Satoko KOMATSU, Yoshie KAMETANI, Shino OHSHIMA, Yusuke OHNO
  • Patent number: 11732273
    Abstract: Disclosed are methods and compositions for in situ germline genome engineering. The disclosed methods and compositions may be utilized for germline genome engineering in a subject having a reproductive organ containing a fertilized zygote, via: (i) isolating or obtaining the reproductive organ from the subject after a time period following insemination of the subject; (ii) introducing a reagent composition into the reproductive organ, the reagent composition comprising a nuclease system and/or an exogeneous polynucleotide; and (iii) electroporating the reproductive organ.
    Type: Grant
    Filed: February 24, 2020
    Date of Patent: August 22, 2023
    Assignees: Board of Regents of the University of Nebraska, Tokai University Educational System
    Inventors: Channabasavaiah Gurumurthy, Masato Ohtsuka, Masahiro Sato
  • Publication number: 20220370380
    Abstract: [Problem] To provide a composition or the like that suppresses the physical destruction of red blood cells (hemolysis) due to exercises and behaviors associated with impact such as striking, for example, as when continually hitting the soles of the feet on the ground by continued running, by using astaxanthin which has a long history of use as a food, and to provide a composition or the like for making the number of red blood cells destroyed (hemolysis number) to lower than the number of red blood cells newly created by hematopoiesis (hematopoiesis number), to suppress and/or improve exercise-induced hemolytic anemia caused by the physical destruction of red blood cells (hemolysis). [Solution] Astaxanthin is used as an active ingredient.
    Type: Application
    Filed: October 29, 2020
    Publication date: November 24, 2022
    Applicants: AstaReal Co., Ltd., Tokai University Educational System
    Inventors: Nobuko Hongo, Rika Hirashima, Kumi Tominaga, Yasuhiro Nishizaki
  • Publication number: 20220364086
    Abstract: The present invention aims at establishing a novel therapy for facioscapulohumeral muscular dystrophy. An oligonucleotide or a pharmaceutically acceptable salt thereof, wherein the oligonucleotide comprises an oligonucleotide of 15-30 bases consisting of a nucleotide sequence complementary to the region of nucleotide Nos. 502-556 or 578-612 of DUX4-fl mRNA consisting of the nucleotide sequence as shown in SEQ ID NO: 1; the 5? and/or 3? end of the oligonucleotide may be chemically modified; and the oligonucleotide is capable of switching the splice form of the DUX4 gene from DUX4-fl to DUX4-s. A pharmaceutical drug comprising the above oligonucleotide or a pharmaceutically acceptable salt thereof (e.g. therapeutic for facioscapulohumeral muscular dystrophy).
    Type: Application
    Filed: July 10, 2020
    Publication date: November 17, 2022
    Applicants: DAIICHI SANKYO COMPANY, LIMITED, Tokai University Educational System
    Inventors: Makoto KOIZUMI, Akifumi NAKAMURA, Takahiro KATAGIRI, Hiroaki MITSUHASHI
  • Publication number: 20220296647
    Abstract: Provided is reproducible means that enables production of nucleus pulposus progenitor cells (preferably, an active nucleus pulposus progenitor cell phenotype) from desired cells such as terminally differentiated cells and stem cells having pluripotency or multipotency. A nucleus pulposus progenitor cell inducer according to the present invention comprising an effective amount of a gene of Brachyury (T) or a homolog thereof, at least one selected from the group consisting of SRY-box6 (SOX6) or a homolog thereof and Forkhead Box Q1 (FOXQ1) or a homolog thereof, and MYC Proto-Oncogene, BHLH Transcription Factor (cMyc) or a homolog thereof (nucleus pulposus progenitor cell master regulator transcription factor), or a product thereof.
    Type: Application
    Filed: July 29, 2021
    Publication date: September 22, 2022
    Applicant: Tokai University Educational System
    Inventors: Daisuke SAKAI, Jordy SCHOL, Yoshihiko NAKAMURA
  • Publication number: 20220184138
    Abstract: Provided is reproducible means that enables the production of an active nucleus pulposus cell phenotype from desired cells such as terminally differentiated cells or pluripotent or multipotent stem cells. Provided is a differentiation inducer containing an effective amount of a gene of at least two transcription factors selected from the group consisting of Brachyury (T), SRY-box6 (SOX6), C and Forkhead Box Q1 (FOXQ1), or homologs thereof (nucleus pulposus cell master regulator transcription factor), or a product thereof.
    Type: Application
    Filed: February 6, 2020
    Publication date: June 16, 2022
    Applicants: Tokai University Educational System, Kyoto University
    Inventors: Daisuke SAKAI, Jordy SCHOL, Shunsuke HIRAISHI, Shinji MASUI
  • Patent number: 10668281
    Abstract: In order to make advanced gait training easy and effective, an electrical spinal cord stimulator for gait training used in gait training for those who have difficulty in walking due to hemiplegia includes: first and second electrodes attached to a rehabilitant; a detector which detects a gait-related physical movement of the rehabilitant; and an electrical sensory nerve stimulation generator which generates, according to a detection result of the detector, electrical stimulation to be applied through the first and second electrodes to a nerve root of a sensory nerve which communicates with a spinal cord.
    Type: Grant
    Filed: March 14, 2016
    Date of Patent: June 2, 2020
    Assignees: Tokai University Educational System, Keio University
    Inventors: Toshiyuki Fujiwara, Yoshihisa Masakado, Junichi Ushiba
  • Publication number: 20180187215
    Abstract: Disclosed are compositions, methods, and kits for modifying DNA within cells as well as compositions and methods for modifying gene expression in a cell. In particular, the invention generally relates to compositions, methods, and kits for DNA editing using single-stranded DNA. Compositions and methods for modifying gene expression using artificial microRNAs (amiRNA) are also contemplated.
    Type: Application
    Filed: February 7, 2018
    Publication date: July 5, 2018
    Applicants: Board of Regents of the University of Nebraska, Tokai University Educational System
    Inventors: Channabasavaiah B. Gurumurthy, Hiromi Miura, Masato Ohtsuka
  • Patent number: 9777951
    Abstract: Disclosed is a thermoacoustic engine having: resonance pipes including a working gas; motors; and a branch pipe, where each of the motors has a regenerator, a heater, and a cooler, a temperature gradient is given between both ends of the regenerator to generate self-excited oscillation of the working gas, a channel cross-sectional area of the resonance pipe that is coupled to the heater is expanded by a same amplification factor of a work flow based on the self-excited oscillation or by an amplification factor within a range of ±30% of the amplification factor of the work flow to a channel cross-sectional area of a resonance pipe that is coupled to the cooler, and a channel cross-sectional area of the regenerator is set by 4 to 36 times of the channel cross-sectional area of the resonance pipe that is coupled to the cooler.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: October 3, 2017
    Assignee: Tokai University Educational System
    Inventors: Shinya Hasegawa, Yasuo Oshinoya, Tsuyoshi Yamaguchi, Tomohiro Kaneko
  • Patent number: 8968392
    Abstract: A method of inhibiting vascular intimal hyperplasia including: placing a stent within a blood vessel, the stent having a stent body of a cylindrical configuration having outer and inner surfaces with a diamond-like thin film coated on the surfaces, a first coated layer coating at least the outer surface of the stent body, the first coated layer being prepared of a first composition comprising a biodegradable polymer and a vascular intimal hyperplasia inhibitor of a kind, comprising argatroban, which does not inhibit proliferation of endothelial cells, the weight composition ratio of the polymer to the vascular intimal hyperplasia inhibitor being within the range of 8:2 to 7:3, and a second coated layer; and causing argatroban to be released from the stent to thereby inhibit the vascular intimal hyperplasia without inhibiting proliferation of endothelial cells.
    Type: Grant
    Filed: July 30, 2012
    Date of Patent: March 3, 2015
    Assignees: Japan Stent Technology Co., Ltd., Tokai University Educational System, Toyo Advanced Technologies Co., Ltd., Hiroo Iwata
    Inventors: Ikuo Omura, Zhen Yu Jin, Shuzo Yamashita, Hiroo Iwata, Akira Mochizuki
  • Patent number: 8903470
    Abstract: A velocity-image creating unit creates a velocity image that indicates a distribution of velocity components with respect to each of a plurality of images obtained by repeating a plurality of number of times Echo Planar Imaging (EPI) that is capable of obtaining velocity components of a Cerebrospinal Fluid (CSF) flowing inside a subject. A velocity-variance image creating unit calculates variance of velocity components along the time sequence by same position on velocity images by using a plurality of created velocity images. A superimposed-image processing unit then superimposes the distribution of the variance of the velocity components according to the velocity-variance image on an average absolute-value image, and an image display unit displays a superimposed image.
    Type: Grant
    Filed: August 9, 2012
    Date of Patent: December 2, 2014
    Assignees: Tokai University Educational Systems, Toshiba Medical Systems Corporation
    Inventors: Shinya Yamada, Hitoshi Kanazawa
  • Patent number: 8903469
    Abstract: A velocity-image creating unit creates a velocity image that indicates a distribution of velocity components with respect to each of a plurality of images obtained by repeating a plurality of number of times Echo Planar Imaging (EPI) that is capable of obtaining velocity components of a Cerebrospinal Fluid (CSF) flowing inside a subject. A velocity-variance image creating unit calculates variance of velocity components along the time sequence by same position on velocity images by using a plurality of created velocity images. A superimposed-image processing unit then superimposes the distribution of the variance of the velocity components according to the velocity-variance image on an average absolute-value image, and an image display unit displays a superimposed image.
    Type: Grant
    Filed: October 2, 2009
    Date of Patent: December 2, 2014
    Assignees: Tokai University Educational Systems, Toshiba Medical Systems Corporation
    Inventors: Shinya Yamada, Hitoshi Kanazawa
  • Patent number: 8821882
    Abstract: A vaccine preparation characterized in that Neospora caninum-derived dense granule protein 7 or apical membrane antigen 1 or an immunologically active variant or derivative thereof is included in liposomes each having an oligosaccharide capable of binding to a carbohydrate recognition molecule on the surface of antigen-presenting cells on the surface of the liposome.
    Type: Grant
    Filed: September 11, 2009
    Date of Patent: September 2, 2014
    Assignees: Obihiro University of Agriculture and Veterinary Medicine, Tokai University Educational System
    Inventors: Yoshifumi Nishikawa, Naoaki Yokoyama, Naoya Kojima
  • Patent number: 8641756
    Abstract: A stent includes a stent body of a cylindrical configuration having outer and inner surfaces, a first coated layer coating at least the outer surface, and a second coated layer coating substantially completely over the first coated layer. The first coated layer is prepared of a first composition comprising a polymer and a vascular intimal hyperplasia inhibitor (preferably argatroban) of a kind, which does not inhibit proliferation of endothelial cells, the weight compositional ratio of the polymer to the inhibitor being within the range of 8:2 to 3:7. On the other hand, the second coated layer is prepared of a polymer alone or a second composition comprising a polymer and a drug, the weight compositional ratio of the drug to 80% by weight of the polymer being less than 20% by weight.
    Type: Grant
    Filed: June 8, 2012
    Date of Patent: February 4, 2014
    Assignees: Japan Stent Technology Co., Ltd., Tokai University Educational System, Toyo Advanced Technologies Co., Ltd., Hiroo Iwata Institute for Frontier Medical Sciences, Kyoto University
    Inventors: Ikuo Omura, Zhen Yu Jin, Shuzo Yamashita, Hiroo Iwata, Akira Mochizuki
  • Patent number: 8526095
    Abstract: Disclosed is an electrochromic display device comprising: a first and a second substrates; a first and a second electrodes; and an electrochromic composition layer, wherein the device is of a passive matrix drive where the a display and an erasion are performed by an energization in reverse directions between the electrodes, the first and the second electrodes respectively comprise a plurality of electrodes, a pixel is formed where the electrodes are in a grade separated crossing, and the display is performed by voltage application processing where: (i) the first electrode is set as negative, and the second electrode is set as positive, to apply a voltage of a first potential difference, immediately followed by (ii) the first electrode being set as positive, and the second electrode being set as negative, to apply a voltage of a second potential difference equal to or more than the first potential difference.
    Type: Grant
    Filed: April 29, 2010
    Date of Patent: September 3, 2013
    Assignees: Funai Electric Advanced Applied Technology Research Institute Inc., Tokai University Educational System, Funai Electric Co., Ltd.
    Inventors: Toshimi Fukuoka, Wu Weng, Tetsuya Higuchi, Masao Suzuki, Rikuo Takano, Makoto Omodani
  • Patent number: 8492148
    Abstract: The present invention provides a method for expanding an endothelial progenitor cell in vitro. More particularly, the present invention provides a method for culturing a hemangioblast comprising incubating a hemangioblast in a serum-free culture medium containing one or more factors selected from the group consisting of stem cell growth factor, interleukin-6, FMS-like tyrosine kinase 3 and thrombopoietin, and a vascular endothelial cell produced by the method; and a serum-free culture medium containing one or more factors selected from the group consisting of stem cell growth factor, interleukin-6, FMS-like tyrosine kinase 3 ligand and thrombopoietin, and a kit for the preparation of the serum-free culture medium and the like.
    Type: Grant
    Filed: February 22, 2006
    Date of Patent: July 23, 2013
    Assignees: Foundation for Biomedical Research & Innovation, Tokai University Educational System
    Inventors: Takayuki Asahara, Haruchika Masuda
  • Patent number: 8461562
    Abstract: Provided is a web carrier which can prevent creasing of a web by detecting a sign of creasing of a web during carriage of the web. The web carrier (1) for carrying a sheetlike web (10) by means of a plurality of rollers (2) detects the linear pattern of a waveform generated on the web (10) from an image picked up by means of a camera (imaging means) (3) using an image analysis means (73) in a controller (7), recognizes a state becoming the sign of creasing with the aid of the image and simultaneously analyzes the entering direction of the linear pattern into a guide roller (2c), drives the shaft (20c) of the guide roller (angle adjusting roller) (2c) in the direction of canceling the waveform (so that the web is not creased), and controls an alignment adjusting means (5) such that the web is not creased.
    Type: Grant
    Filed: November 21, 2007
    Date of Patent: June 11, 2013
    Assignees: Toyota Jidosha Kabushiki Kaisha, Tokai University Educational System
    Inventor: Hiromu Hashimoto
  • Patent number: 8409272
    Abstract: A stent includes a stent body of a cylindrical configuration having outer and inner surfaces, a first coated layer coating at least the outer surface, and a second coated layer coating substantially completely over the first coated layer. The first coated layer is prepared of a first composition comprising a polymer and a vascular intimal hyperplasia inhibitor (preferably argatroban) of a kind, which does not inhibit proliferation of endothelial cells, the weight compositional ratio of the polymer to the inhibitor being within the range of 8:2 to 3:7. On the other hand, the second coated layer is prepared of a polymer alone or a second composition comprising a polymer and a drug, the weight compositional ratio of the drug to 80% by weight of the polymer being less than 20% by weight.
    Type: Grant
    Filed: September 3, 2008
    Date of Patent: April 2, 2013
    Assignees: Japan Stent Technology Co., Ltd., Tokai University Educational System, Toyo Advanced Technologies Co., Ltd.
    Inventors: Ikuo Omura, Zhen Yu Jin, Shuzo Yamashita, Hiroo Iwata, Akira Mochizuki
  • Patent number: 8404602
    Abstract: A plasma oxidation method includes the steps of: generating oxygen-containing plasma with a process gas containing oxygen; applying a bias voltage to a substrate placed on a stage; and radiating positive ions and negative ions in the oxygen-containing plasma onto the substrate so as to perform plasma oxidation of the substrate while controlling a bias potential of the substrate in such a manner that a maximum value Vmax and a minimum value Vmin of the bias potential and a plasma potential Vp satisfy a following relationship: Vmin<Vp<Vmax.
    Type: Grant
    Filed: April 12, 2011
    Date of Patent: March 26, 2013
    Assignees: FUJIFILM Corporation, Tokai University Educational System
    Inventors: Shuji Takahashi, Haruo Shindo
  • Patent number: 8303222
    Abstract: A fastening body structure having a screw member which uses a module screw having a countersunk head and a washer made of a shape memory alloy. With this structure, the washer does not expand even if subjected to large fastening force and the washer can be easily removed when the screw fastening is released. The fastening body structure fastens and fixes a desired part to the installation section by using the screw member having the module screw and the washer. The module screw has a male screw used as a pair with a female screw thread section formed in the installation section. The washer has an inner diameter corresponding to the module screw. An irregular surface section is formed on a slope surface at the lower part of the head of the module screw or on the surface of the washer that makes contact with the screw.
    Type: Grant
    Filed: November 28, 2008
    Date of Patent: November 6, 2012
    Assignee: Tokai University Educational System
    Inventors: Kazunari Yoshida, Masahiro Nakanishi