Abstract: A brush composition used for phase-separation of a layer containing a block copolymer on a substrate, the brush composition including a resin component (N), the resin component (N) containing a hydrophobic structural unit (Nx) and a hydrophilic structural unit (Ny), the amount of the structural unit (Ny) within the resin component (N) being 5 mol % or less.
Abstract: A filtration material including a silica base material having a group represented by the following general formula (a0-1) [in formula (a0-1), Ya01 represents a divalent linking group; Ra01 represents a hydrocarbon group which may have a substituent; Ra02 represents a hydroxyl group or a hydrocarbon group having 1 to 6 carbon atoms which may have a substituent; n01 represents an integer of 0 to 5; and the symbol “*” represents a valence bond with respect to the silica base material].
Abstract: The present invention provides a resist composition prepared by dissolving components in an organic solvent containing ethyl lactate, which suppresses deterioration of sensitivity with time and also has required lithographic characteristics, and a method for forming a resist pattern. The resist composition is prepared by dissolving a resin component (A) which exhibits changeable alkali solubility under an action of an acid, an acid generator component (B) which generates an acid upon exposure, an amine (D) and acetic acid in an organic solvent (S) containing ethyl lactate.
Abstract: There is provided a positive photoresist composition capable of forming a pattern with excellent resolution, excellent resistance to reflection off the substrate, and excellent perpendicularity. The positive photoresist composition comprises (A) an alkali-soluble novolak resin in which a portion of the hydrogen atoms of all the phenolic hydroxyl groups are substituted with 1,2-naphthoquinonediazidesulfonyl groups, and (B) a dissolution promoter represented by a general formula (b-1) and/or a general formula (b-11) shown below.
Abstract: To provide a developer composition for resists, capable of improving dimensional controllability of a resist pattern. The developer composition for resists comprises an organic quaternary ammonium base as a main component, said developer composition further comprising an anionic surfactant represented by the following general formula (I), and SO42?, the content of S42? being from 0.01 to 1% by mass. In the formula, at least one of R1 and R2 represents an alkyl or alkoxy group having 5 to 18 carbon atoms and the other one represents a hydrogen atom, or an alkyl or alkoxy group having 5 to 18 carbon atoms, and at least one of R3, R4 and R5 represents an ammonium sulfonate group or a sulfonic acid-substituted ammonium group and the others represent a hydrogen atom, an ammonium sulfonate group or a sulfonic acid-substituted ammonium group.
Abstract: There is provided a positive type resist composition formed by dissolving (A) a resin component with a unit derived from a (meth)acrylate ester in the principal chain, for which the solubility in alkali increases under the action of acid, and (B) an acid generator component which generates acid on exposure, in an organic solvent component (C), wherein the resin component (A) is a copolymer comprising (a1) a unit derived from a (meth)acrylate ester comprising an acid dissociable, dissolution inhibiting group containing a polycyclic group, (a2) a unit derived from a (meth)acrylate ester comprising a lactone containing monocyclic group or polycyclic group, (a3) a unit derived from a (meth)acrylate ester comprising a hydroxyl group containing polycyclic group, and (a4) a unit derived from a (meth)acrylate ester comprising a polycyclic group which is different from the unit (a1), the unit (a2) and the unit (a3).
Type:
Grant
Filed:
November 29, 2002
Date of Patent:
January 3, 2006
Assignee:
Tokyo Ohka Kogyo., Ltd.
Inventors:
Hideo Hada, Satoshi Fujimura, Jun Iwashita
Abstract: For suppressing decomposition of organic group (for example, CH3 group) during ashing process, which is bonded to Si atom of an organic SOG film or layer for use in flattening process, a method comprises following steps: forming an organic SOG layer directly or through a predetermined film including a hillock protection layer on said lower wiring layer; forming said upper wiring layer on said organic SOG layer without processing of etching back; forming a via hole through an etching process by using a patterned resist layer provided on said upper wiring layer as a mask; performing ashing process with a plasma by making ion or radical which is induced from oxygen gas as a main reactant, under an atmosphere of pressure ranging from 0.01 Torr to 30.0 Torr; and burying said via hole with conductive material so as to electrically connect between said lower wiring layer and said upper wiring layer.