Abstract: A humidifier system includes a spray apparatus in a housing which sprays a mist of water droplets onto a mist eliminator to intercept the mist of water droplets. The mist of droplets is captured in a liquid phase by the mist eliminator and is substantially completely converted into a vapor phase in the form of increased humidity in the air stream. A humidity sensor located downstream of the mist eliminator senses the humidity of the stream of air. A controller controls the quantity of water sprayed in response to the humidity sensed to maintain a predetermined humidity in the humidified stream of air. A second humidifier includes a heater which creates a region of intense heat to instantaneously evaporate water mist directed thereon in a stream of air. In a third embodiment, water and pressurized air are simultaneously injected into a region of intense heat.
Abstract: First and second humidifiers (10,100) and methods for humidifying air are disclosed. The first humidifier (10) comprises a spray apparatus (16) in a housing (12) which sprays a mist of water droplets onto a mist eliminator (20) to intercept the mist of water droplets. The mist of droplets is captured in a liquid phase by the mist eliminator (20) and is substantially completely converted into a vapor phase in the form of increased humidity in the air stream. A humidity sensor (38) located downstream of the mist eliminator (20) senses the humidity of the stream of air. A controller controls the quantity of water sprayed in response to the humidity sensed to maintain a predetermined humidity in the humidified stream of air. The second humidifier (100) includes a heater (122) which creates a region of intense heat (124) to instantaneously evaporate water mist directed thereon in a stream of air.