Patents Assigned to Topcon Medical Laser Systems, Inc.
  • Patent number: 8591501
    Abstract: Systems and processes are described relating to laser-based ophthalmic intervention technologies, and, more specifically, to techniques for creating lesions on an eye using a modular system featuring one or more coherent fiber bundles configured to deliver laser energy to the eye from a separate housing wherein a laser source is located. The subject technology may be utilized to not only separate a patient from certain portions of the hardware, but also to facilitate patterned lesion creation using mobile devices such as LIO and laser endoprobe devices.
    Type: Grant
    Filed: March 7, 2011
    Date of Patent: November 26, 2013
    Assignee: Topcon Medical Laser Systems, Inc.
    Inventors: David Mintz, Daniel Palanker, Gregory Kintz
  • Patent number: 8568393
    Abstract: A system and method of performing therapy on target eye tissue. A light source produces a beam of light, and a scanning device deflects the light beam to produce an pattern of the light beam. An ophthalmic lens assembly includes a mirror for reflecting the light beam pattern onto the target eye tissue. The mirror is rotatable to angularly align the light beam pattern to the target tissue. Control electronics control the scanning device to apply the light beam pattern onto the reflective optical element at first and second angular orientations separated by a predetermined angle RA. The predetermined angle RA is set such that light beam patterns applied to the target tissue at the first and second angular orientations, which are also angularly aligned to the target tissue through rotation of the mirror, automatically are adjacently abutting to each other on the target tissue.
    Type: Grant
    Filed: March 10, 2008
    Date of Patent: October 29, 2013
    Assignee: Topcon Medical Laser Systems, Inc.
    Inventor: Daniel V. Palanker
  • Publication number: 20130204235
    Abstract: Systems and processes for the optimization of laser treatment of an eye are disclosed. The process can include receiving a set of parameters of a laser treatment (e.g., an aerial beam size, contact lens, pulse duration, and the desired clinical grade), determining an estimated size of a lesion to be generated by the laser treatment beam, receiving a lesion pattern density (e.g., full grid, mild grid, or other), and determining a recommended pattern of laser treatment beam spots. The recommended pattern of laser treatment beam spots may include a recommended number of laser treatment spots and a spacing between the spots.
    Type: Application
    Filed: August 2, 2012
    Publication date: August 8, 2013
    Applicant: Topcon Medical Laser Systems, Inc.
    Inventor: Daniel V. PALANKER
  • Publication number: 20130103008
    Abstract: Systems and processes are described relating to laser-based ophthalmic intervention technologies and, more specifically, to techniques for delivering reproducible amounts of laser energy to create visible and sub-visible lesions on an eye. The subject technology may provide a user with the ability to adjust the amount of energy to be delivered to the eye tissue by selecting a single numerical value. In response, the system may adjust the power and/or duration of the laser treatment beam pulse according to an operating curve determined by the system.
    Type: Application
    Filed: October 20, 2011
    Publication date: April 25, 2013
    Applicant: Topcon Medical Laser Systems, Inc.
    Inventor: Chris Sramek
  • Publication number: 20130096542
    Abstract: A system and method for treating ophthalmic target tissue, including a light source for generating a beam of light, a beam delivery system that includes a scanner for generating patterns, and a controller for controlling the light source and delivery system to create a dosimetry pattern of the light beam on the ophthalmic target tissue. One or more dosage parameters of the light beam vary within the dosimetry pattern, to create varying exposures on the target tissue. A visualization device observes lesions formed on the ophthalmic target tissue by the dosimetry pattern. The controller selects dosage parameters for the treatment beam based upon the lesions resulting from the dosimetry pattern, either automatically or in response to user input, so that a desired clinical effect is achieved by selecting the character of the lesions as determined by the dosimetry pattern lesions.
    Type: Application
    Filed: November 30, 2012
    Publication date: April 18, 2013
    Applicant: TOPCON MEDICAL LASER SYSTEMS, INC.
    Inventor: TOPCON MEDICAL LASER SYSTEMS, INC.
  • Publication number: 20130096543
    Abstract: A system and method for treating ophthalmic target tissue, including a light source for generating a beam of light, a beam delivery system that includes a scanner for generating patterns, and a controller for controlling the light source and delivery system to create a dosimetry pattern of the light beam on the ophthalmic target tissue. One or more dosage parameters of the light beam vary within the dosimetry pattern, to create varying exposures on the target tissue. A visualization device observes lesions formed on the ophthalmic target tissue by the dosimetry pattern. The controller selects dosage parameters for the treatment beam based upon the lesions resulting from the dosimetry pattern, either automatically or in response to user input, so that a desired clinical effect is achieved by selecting the character of the lesions as determined by the dosimetry pattern lesions.
    Type: Application
    Filed: November 30, 2012
    Publication date: April 18, 2013
    Applicant: Topcon Medical Laser Systems, Inc.
    Inventor: Topcon Medical Laser Systems, Inc.
  • Patent number: 8336555
    Abstract: A system and method for treating ophthalmic target tissue, including a light source for generating a beam of light, a beam delivery system that includes a scanner for generating patterns, and a controller for controlling the light source and delivery system to create a dosimetry pattern of the light beam on the ophthalmic target tissue. One or more dosage parameters of the light beam vary within the dosimetry pattern, to create varying exposures on the target tissue. A visualization device observes lesions formed on the ophthalmic target tissue by the dosimetry pattern. The controller selects dosage parameters for the treatment beam based upon the lesions resulting from the dosimetry pattern, either automatically or in response to user input, so that a desired clinical effect is achieved by selecting the character of the lesions as determined by the dosimetry pattern lesions.
    Type: Grant
    Filed: November 13, 2007
    Date of Patent: December 25, 2012
    Assignee: Topcon Medical Laser Systems, Inc.
    Inventors: Daniel V. Palanker, Dan E. Andersen
  • Publication number: 20110319874
    Abstract: Systems and processes are described relating to laser-based ophthalmic intervention technologies, and, more specifically, to techniques for creating lesions on an eye using a modular system featuring one or more coherent fiber bundles configured to deliver laser energy to the eye from a separate housing wherein a laser source is located. The subject technology may be utilized to not only separate a patient from certain portions of the hardware, but also to facilitate patterned lesion creation using mobile devices such as LIO and laser endoprobe devices.
    Type: Application
    Filed: March 7, 2011
    Publication date: December 29, 2011
    Applicant: Topcon Medical Laser Systems, Inc.
    Inventors: David MINTZ, Daniel PALANKER, Gregory KINTZ
  • Patent number: 8040582
    Abstract: A beam delivery system for treating target tissue that includes an input for receiving a light beam, a variable attenuator for providing variable attenuation of the light beam, a power and wavelength detection assembly, a spot size adjustment assembly, and a controller. The power and wavelength detection assembly measures the power level of the beam, and detects when unwanted wavelengths are present in the light beam. The spot size adjustment assembly selectively feeds the beam through different optical fibers to achieve different spot sizes of the beam. The controller controls the variable attenuator, the power and wavelength detection assembly, and the spot size adjustment assembly to achieve the desired power and wavelength, and beam spot size.
    Type: Grant
    Filed: October 16, 2008
    Date of Patent: October 18, 2011
    Assignee: Topcon Medical Laser Systems, Inc.
    Inventors: David G. Angeley, Steven S. Christensen, Michael J. Simoneau, Phillip H. Gooding