Abstract: Various embodiments are provided herein for an optical spectroscopy probe which generally includes a probe head having optical elements for coupling to an excitation fiber for receiving laser energy therefrom and generating a collimated excitation light beam; and a sample optic adjacent to the probe head, the sample optic having at least one optical element with two non-parallel surfaces to receive the collimated excitation light beam, to transmit the collimated excitation light beam to a sample, and to collect at least one afocal returning scattered light beam that is reflected from the sample.
Abstract: Various embodiments are described that provide an optical spectroscopy probe which has a probe head with a first attachment portion with at least one component having a first shape, a sample optic subassembly with a second attachment portion that is proximal to the probe head and has at least one component with a second shape that is complimentary to the first shape for releasably engaging the first attachment portion of the probe head, and a locking mechanism to hold the sample optic subassembly and the probe head together and constrain relative motion therebetween along at least five degrees of freedom.
Abstract: Various embodiments of apparatuses, systems and methods are described herein for a spectrometer comprising at least two dispersive elements configured to receive at least one input optical signal and generate two or more pluralities of spatially separated spectral components, at least a portion of the at least two dispersive elements being implemented on a first substrate; and a single detector array coupled to the at least two dispersive elements and configured to receive and measure two or more pluralities of narrowband optical signals derived from the two or more pluralities of spatially separated spectral components, respectively.
Type:
Grant
Filed:
December 24, 2014
Date of Patent:
January 5, 2016
Assignee:
Tornado Spectral Systems Inc.
Inventors:
Kyle Preston, Arthur Nitkowski, Nicholas Sherwood, Arsen Hajian
Abstract: Various embodiments of systems and methods are described herein that can be used for obtaining large bandwidth, high resolution spectral images in a single snapshot by using multiple detection stages that operate in different wavelength ranges and are coupled in a branch-like fashion.
Type:
Application
Filed:
January 31, 2014
Publication date:
December 24, 2015
Applicant:
Tornado Spectral Systems Inc.
Inventors:
Arsen R. Hajian, Jeffrey T. Meade, Bradford B. Behr, Andrew T. Cenko
Abstract: A beam reformatter to receive and split a beam into a plurality of beam portions, and further distribute and propagate two or more of the plurality of beam portions in substantially the same direction to create a reformatted composite beam, wherein the plurality of beam portions each contain the same spatial and spectral information as the received beam.
Type:
Grant
Filed:
January 18, 2013
Date of Patent:
February 17, 2015
Assignee:
Tornado Spectral Systems, Inc.
Inventors:
Jeffrey T. Meade, Arsen R. Hajian, Bradford B. Behr, Andrew T. Cenko
Abstract: A spectrograph including light beam reformatting element(s), beam expander(s), dispersive element(s) and light receiving element(s). The light beam reformatting element(s) reformat a received light beam into a reformatted light beam having a first dimension along a first axis that is larger than a dimension of the received light beam along the first axis and a second dimension along a second axis substantially orthogonal to the first axis that is smaller than a dimension of the received light beam along the second axis. The beam expander(s) anamorphically expand the reformatted light beam along the second axis into an expanded light beam. The dispersive element(s) disperse the expanded light beam along the second axis, resulting in a dispersed light beam. The light receiving element(s) receive the dispersed light beam. The light receiving element(s) may include one or more detectors to measure spectral intensity of the dispersed light beam.
Abstract: An optical coherence tomography (OCT) system comprising: a splitter configured to receive and split an optical source beam generating a reference beam and a sample beam, the sample beam directed at a sample and interacting with the sample to generate a return beam; a delay module configured to receive and introduce an optical delay in the reference beam, to generate a delayed reflected beam configured to interfere with the return beam to generate an interferogram; a spatial filter system capable of filtering randomly scattered light from at least one of the return beam or the interferogram; and a detector array to receive the interferogram for spatial and spectral analysis.
Type:
Grant
Filed:
July 29, 2011
Date of Patent:
July 1, 2014
Assignee:
Tornado Spectral Systems, Inc.
Inventors:
Arsen R. Hajian, Bradford B. Behr, Jeffrey T. Meade, Andrew T. Cenko