Patents Assigned to Tornier
  • Patent number: 10898348
    Abstract: A surgical shoulder articulation replacement method is provided. The method can include providing a humeral implant having a hollow stem. The hollow stem can be provided with a sharp distal edge. The method can include impacting the humeral implant in a cancellous bone of a humeral head of a patient, with the sharp distal edge cutting the cancellous bone in the process.
    Type: Grant
    Filed: December 7, 2017
    Date of Patent: January 26, 2021
    Assignee: Tornier
    Inventors: Willy Vivanz, Jean-Emmanuel Cardon
  • Patent number: 10898336
    Abstract: The present inventions relate to devices and methods that improve the positioning and fit of orthopedic reconstructive joint replacement stem implants relative to existing methods. For example, an embodiment of the device provides a stem component comprising proximal and distal body portions that can be configured to mimic a geometric shape of a central cavity region created in a bone of a joint for improving conformance and fixation of the stem component thereto. Further, another embodiment provides a system of stem implants that each have a unique medial offset for facilitating the matching of an implant to the geometry of a central cavity region of a bone. Additionally, an inclination angle of a resection surface of each of the implants in the system can remain constant or vary as a function of the medial offset.
    Type: Grant
    Filed: August 29, 2016
    Date of Patent: January 26, 2021
    Assignee: Tornier, Inc.
    Inventors: Leo M. Reubelt, Peter L. Verrillo
  • Publication number: 20200390482
    Abstract: A device for coaptation of bone parts or bone fragments, comprising an integral plate obtained by moulding whereof one portion (1) is made from a first biocompatible polymer comprising at least one or, preferably, a plurality of areas or inserts (2) provided with a through hole (3), said areas or inserts being made from a second biocompatible polymer which is more malleable than the first polymer, said areas or inserts having mechanical properties allowing a self-tapping of the inner surface of the holes, by means of screws that can be used for securing said plate to bone tissue, said support portion and said areas or inserts having a partial molecular bond between them.
    Type: Application
    Filed: August 31, 2020
    Publication date: December 17, 2020
    Applicant: TORNIER
    Inventor: Frederic IMPELLIZZERI
  • Patent number: 10857005
    Abstract: This positioning system (100) for a bone resecting instrumentation comprising a resection driver (2), comprises at least one of a gyroscopic sensor (8) integral in motion with the resection driver (2) and adapted to sense a deviation angle (?) with respect to a reference direction (X), and at least one positioning marker (12; 140) marking a fixed position on the reference direction (X), and a depth sensor (10; 18) integral in motion with the resection driver (2), for detecting a resection depth (d) based on the relative longitudinal positions of the positioning marker (12; 140) and the depth sensor (10). The invention also concerns a positioning kit including such a positioning system and a separate electronic device.
    Type: Grant
    Filed: March 29, 2018
    Date of Patent: December 8, 2020
    Assignee: Tornier
    Inventors: Benjamin Dassonville, Jean-Emmanuel Cardon, Pierric Deransart
  • Patent number: 10799274
    Abstract: A device for coaptation of bone parts or bone fragments, comprising an integral plate obtained by moulding whereof one portion (1) is made from a first biocompatible polymer comprising at least one or, preferably, a plurality of areas or inserts (2) provided with a through hole (3), said areas or inserts being made from a second biocompatible polymer which is more malleable than the first polymer, said areas or inserts having mechanical properties allowing a self-tapping of the inner surface of the holes, by means of screws that can be used for securing said plate to bone tissue, said support portion and said areas or inserts having a partial molecular bond between them.
    Type: Grant
    Filed: November 7, 2018
    Date of Patent: October 13, 2020
    Assignee: TORNIER
    Inventor: Frederic Impellizzeri
  • Patent number: 10786233
    Abstract: A suture anchor according to embodiments of the invention includes a body (102) having a proximal (121) and distal (125) ends and at least two suture paths open towards the proximal end and not open (e.g. looped around) towards the distal end and which are respectively capable of receiving a suture, and a proximal cavity (103) opening into a transverse cavity (104). The anchor may also include a transverse wall (105) arranged at least partially in the transverse cavity (104), and for each suture path, a distinct eyelet (112) for the passage of a suture through the transverse wall (105), so that a suture thread (162) in place in the anchor (100) forms a U with a first strand (162a) along the longitudinal axis (X-X), a second strand (162c) substantially parallel thereto, and an arc (162b) formed in the eyelet (112) and connecting the first and second strands.
    Type: Grant
    Filed: November 5, 2015
    Date of Patent: September 29, 2020
    Assignee: Tornier, Inc.
    Inventor: Ryan D. Koepke
  • Patent number: 10765524
    Abstract: The invention concerns a prosthesis comprising: a stem part comprising: a rod, configured for being inserted into a medullary cavity of a diaphyseal fragment of a fractured long bone, for securing the stem part to the diaphyseal fragment, and an epiphyseal end, fixedly secured to the rod by means of at least one linker leg of the stem part, so that a gap is formed between the epiphyseal end and the rod along said at least one linker leg; and an implant distinct from the stem part and comprising: an internal part located at least partially within the gap, and at least one fastener for fastening epiphyseal fragments of the fractured long bone to the stem part, said at least one fastener being secured to the internal part.
    Type: Grant
    Filed: January 28, 2019
    Date of Patent: September 8, 2020
    Assignee: Tornier
    Inventors: Pascal Boileau, Jean-Emmanuel Cardon, Bertrand Claizergues, Vincent Coulange, Benjamin Dassonville, Vincent Gaborit
  • Patent number: 10736619
    Abstract: Some embodiments of the present invention include a suture anchor with both knotless and knotted suture attachment capabilities, as well as methods for loading the suture in knotless and knotted configurations. Some embodiments of the present invention include a suture anchor with an inner implant body with a spreader that slides in relation to an outer expandable collar, such that pushing the expandable collar distally with an inserter causes the spreader to expand the collar against the surrounding bone to secure the suture anchor in place. Such embodiments may also include a detachment or breakaway feature between the inserter and the suture anchor to permit separation after anchor deployment. Some embodiments of the present invention include methods for deploying such suture anchors and expanding the expandable collars and/or detaching the inserter tools. Embodiments of the present invention may be used in various orthopedic applications such as, for example, shoulder repair.
    Type: Grant
    Filed: June 21, 2016
    Date of Patent: August 11, 2020
    Assignee: Tornier, Inc.
    Inventors: Douglas B. Snell, Daniel E. Morgan, Daniel J. Yasevac, Justin C. Anderson
  • Patent number: 10722374
    Abstract: A glenoid implant including a base plate and an articular component. The base plate can include a body and a support structure extending from a distal surface of the body. The body can include a plurality of openings. The articular component can be configured to removably couple to the base plate. The articular component can include a recessed portion configured to at least partially receive the body of the base plate. At least one engagement structure can protrude from a distal facing surface of the recessed portion. Each engagement structure can correspond to one of the plurality of openings in the body. A distal face of the articular component surrounding the recessed portion can be configured to abut the subchondral bone.
    Type: Grant
    Filed: March 1, 2016
    Date of Patent: July 28, 2020
    Assignee: Tornier, Inc.
    Inventors: Brian C. Hodorek, Shawn Martin Gargac
  • Patent number: 10716676
    Abstract: An apparatus and modeling method of the present invention includes the successive steps of generating cartographic data representative of points belonging to a glenoid surface; distinguishing from among the cartographic data a first group of cartographic data corresponding to a first part of the glenoid surface, the first surface part being situated farthest down in the vertical direction in relation to the scapula; calculating from the first group of cartographic data a first ellipsoid portion that coincides substantially with the first surface part; and obtaining a theoretical glenoid surface from the first ellipsoid portion. By virtue of the theoretical glenoid surface obtained by this method, it is possible to assist the surgeon in optimizing the position of implantation of a glenoid component and to produce a glenoid component “made to measure” for the scapula that is to be fitted with a prosthesis.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: July 21, 2020
    Assignee: Tornier SAS
    Inventors: Alain Tornier, Delphine Claire Michelle Henry
  • Patent number: 10695185
    Abstract: Systems and methods for modifying a shoulder joint configuration exhibiting wear that take into account resultant of forces responsible for the wear of the glenoid surface from geometric characteristics of wear.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: June 30, 2020
    Assignee: TORNIER
    Inventor: Yves-Alain Ratron
  • Patent number: 10695195
    Abstract: Methods of implanting a prosthesis to repair a joint include displacing a first bone from the joint formed by an intersection between the first bone and a second bone. An end portion of the first bone is resected to define a resected end. A concavity is formed into the resected end using a shaping tool. The bone is compacted to form a support layer lining the concavity. The prosthesis is implanted in the concavity against the support layer without attaching the prosthesis to the support layer. The joint is reformed with the prosthesis such that the prosthesis remains unattached to the support layer and the first and second bones articulate about the prosthesis.
    Type: Grant
    Filed: July 29, 2016
    Date of Patent: June 30, 2020
    Assignee: Tornier SAS
    Inventors: Michel Hassler, Gilles Walch, Pierric Deransart, Lucile Ferrand, Pascal Boileau
  • Patent number: 10695186
    Abstract: The glenohumeral component of the invention comprises a first side and a second side, which are opposite each other and which, in an implanted state in which the glenohumeral component is free-floating with respect to a humerus and a glenoid of a human shoulder, are in contact respectively with an end portion of the humerus and with a glenoid component intended to be secured to the glenoid. The first side of the glenohumeral component includes a convex articular surface that is designed to articulate with a concave bone surface prepared within the end portion of the humerus. The second side of the glenohumeral component includes a concave articular surface that is designed to articulate with a convex articular surface of the glenoid component. The corresponding shoulder prosthesis is thus reversed.
    Type: Grant
    Filed: December 1, 2017
    Date of Patent: June 30, 2020
    Assignee: Tornier
    Inventors: Philippe Collin, Pierric Deransart
  • Patent number: 10631993
    Abstract: This set comprises glenoid components that each include a body defining, on two of its opposite faces, respectively, a joint surface, intended to cooperate with a humeral head, and a bearing surface bearing against the socket of a shoulder blade. In this set, the glenoid components are provided in several different sizes, respectively defined by the dimensions of the joint surface of their body. At least two glenoid components of which the bearing surfaces respectively have different dimensional geometries are provided so as to allow the surgeon to improve the durability of the mechanical cooperation between the implanted component and the operated socket.
    Type: Grant
    Filed: May 3, 2016
    Date of Patent: April 28, 2020
    Assignee: Tornier, Inc.
    Inventors: Gilles Walch, Pascal Boileau, Chrstophe Levigne, Lucile Ferrand, Pierric Deransart
  • Patent number: 10610363
    Abstract: This glenoidal component for a shoulder prosthesis comprises a base which may be immobilized on the glenoid cavity of a shoulder, and an element provided to be mounted on this base and forming a convex surface of articulation centred on an axis of symmetry. This axis of symmetry is non perpendicular to a rear face of the base intended to abut against the glenoid cavity, this making it possible to compensate a defect in parallelism between the resectioned surface of the glenoid cavity and the axis of the patient's spinal column. A surgeon can select the component in which the axes of symmetry of the components are oriented differently with respect to their rear faces.
    Type: Grant
    Filed: December 14, 2016
    Date of Patent: April 7, 2020
    Assignee: Tornier SAS
    Inventors: Alain Tornier, Francois Sirveaux, Gilles Walch, Daniel Mole, Christophe Levigne, Pascal Boileau, Luc Favard
  • Publication number: 20200085588
    Abstract: This surgical ankle repair method comprises the steps of providing an instrumentation assembly for positioning an ankle prosthesis, the instrumentation assembly including a talar alignment instrument and a cutting block, the talar alignment instrument comprising a front portion and two fins extending from the ends of the front portion, said fins being adapted to be positioned in gutters extending below a tibia of a patient and around a trochlea of a talus of the patient, each fin including a reference marker, the cutting block comprising a tibial alignment structure and a recess which engages a protrusion provided on the talar alignment instrument, positioning the talar alignment instrument such that the fins are disposed in the gutters extending below the tibia and around the trochlea of the talus; aligning the talar alignment instrument so that the fins are parallel to the rotational plane of the talus, perpendicular to the rotational axis of the talus, and so that the reference markers are aligned with a l
    Type: Application
    Filed: November 6, 2019
    Publication date: March 19, 2020
    Applicant: TORNIER, INC.
    Inventors: RICHARD GARRET MAULDIN, YANN BRUNNARIUS, DELPHINE HENRY
  • Patent number: 10575958
    Abstract: This augment insert (200), comprises a coupling member (204) for securing the augment insert to a glenoid component (103) of a shoulder prosthesis (101), and a body (202), comprising a first side (206), configured to bear against a scapular side (107) of the glenoid component when the augment insert is secured to the glenoid component by means of the coupling member; and a second side, opposed to the first side and configured to bear against or be adjacent to a scapula of a patient. According to the invention, the body (202) comprises at least one breakable portion (230), extending from the first side (206) to the second side and configured to be broken off the body. The aperture (234) is provided for accommodating an engaging member (111) of the glenoid component (103), said engaging member protruding from a scapular surface (127) of the scapular side (107) of the glenoid component (103) and being configured for securing the shoulder prosthesis to the scapula.
    Type: Grant
    Filed: May 16, 2018
    Date of Patent: March 3, 2020
    Assignee: Tornier
    Inventors: Jean-Emmanuel Cardon, Benjamin Dassonville
  • Patent number: 10548737
    Abstract: A modular reverse shoulder prosthesis according to embodiments of the present invention includes a stem having a proximal taper and a primary stem axis, the proximal taper extending from the stem about a metaphyseal axis, the metaphyseal axis at an angle with respect to the primary stem axis, a metaphysis having a proximal end, a distal end, a first aperture in the distal end configured to be placed over the proximal taper, and a second aperture in the proximal end having an insert axis that is eccentrically offset from the metaphyseal axis, the metaphysis configured for attachment to the stem at any rotational position of the metaphysis about the metaphyseal axis, and a reverse insert, the reverse insert having a proximal end and a distal end, wherein the proximal end comprises a concave cup formed about a cup axis and configured to receive a glenosphere, and wherein the distal end comprises a locking protrusion, wherein the locking protrusion has an outer surface with a cross-sectional shape that is rotatio
    Type: Grant
    Filed: October 27, 2016
    Date of Patent: February 4, 2020
    Assignee: Tornier Orthopedics Ireland Ltd.
    Inventors: Brian C. Hodorek, Shawn Martin Gargac
  • Patent number: 10524922
    Abstract: A prosthesis that mechanically couples with both cancellous bone and cortical bone of a glenoid includes a head portion comprising a rear surface and an articular surface, an anchor member, and a plurality of deformable fins extending radially outward from the anchor member. The anchor member includes a distal end and a proximal end connected to the rear surface of the head portion. The plurality of deformable fins extend radially outward from the anchor member and includes at least a first proximal fin adjacent to the rear surface of the head portion positioned to engage with the cortical bone. The anchor member may also include at least one distal fin located proximate the distal end of the anchor member positioned to engage with the cancellous bone.
    Type: Grant
    Filed: December 14, 2016
    Date of Patent: January 7, 2020
    Assignee: Tornier, Inc.
    Inventors: Robert Courtney, Jr., Austin W. Mutchler, R. Sean Churchill
  • Patent number: 10517741
    Abstract: This surgical ankle repair method comprises providing an instrumentation assembly for positioning an ankle prosthesis including a talar alignment instrument and a cutting block. The talar alignment instrument is positioned such that fins of the talar alignment instrument are disposed in gutters that extend below the tibia and around the trochlea of the talus. The talar alignment instrument is aligned so that the fins are parallel to the rotational plane of the talus. Alignment of the reference markers is confirmed. The talar alignment instrument is attached to the talus. The cutting block is fastened to the talar alignment instrument. The talus is rotated such that the tibial alignment structure is in a parallel alignment to the longitudinal axis of the tibia. The tibial alignment structure is attached to the tibia. A resection of the talus and at least one resection of the tibia is performed using the cutting block.
    Type: Grant
    Filed: February 16, 2016
    Date of Patent: December 31, 2019
    Assignee: Tornier, Inc.
    Inventors: Richard Garret Mauldin, Yann Brunnarius, Delphine Henry