Patents Assigned to Tosoh Corporation
  • Patent number: 8846214
    Abstract: An amine derivative represented by the following general formula (1) and exhibiting a temperature difference of 30° C. or more as defined by the difference of [decomposition temperature (° C.) minus sublimation temperature (° C.)]: wherein R1 and R2 independently represent a substituted or unsubstituted C6-40 aryl or C5-40 heteroaryl group; and R3 and R4 independently represent a hydrogen atom, a straight-chain, branched or cyclic C1-18 alkyl or C1-18 alkoxy group, or a substituted or unsubstituted C6-40 aryl or C5-40 heteroaryl group, provided that R3 and R4 may form together a cyclic hydrocarbon group. The amine derivative is useful as an organic electroluminescent material.
    Type: Grant
    Filed: June 2, 2010
    Date of Patent: September 30, 2014
    Assignee: Tosoh Corporation
    Inventors: Shinichi Ishikawa, Naoki Matsumoto, Takanori Miyazaki, Yasushi Hara
  • Patent number: 8828198
    Abstract: To provide a cylindrical sputtering target, whereby cracking during sputtering can be remarkably reduced. A cylindrical sputtering target, wherein a cylindrical target material made of ITO or AZO has a relative density of at least 90%; the angle between the grinding direction on its outer circumferential surface and a straight line parallel with its cylindrical axis (out of such angles, ? represents an angle between 0° and 90°) satisfies 45°<??90° or tan ?>?R/L (where R is an outside diameter of the cylindrical target material, and L is the length of the cylindrical target material); and the surface roughness Ra of the outer circumferential surface of the cylindrical target material is at most 3 ?m.
    Type: Grant
    Filed: July 1, 2008
    Date of Patent: September 9, 2014
    Assignee: Tosoh Corporation
    Inventors: Shigehisa Todoko, Kenichi Itoh, Tetsuo Shibutami
  • Publication number: 20140248198
    Abstract: To provide a palladium separating agent capable of separating palladium ions from a solution containing palladium ions of a low concentration to a high concentration in a short time with a high selectivity, and a method for separating palladium. A palladium separating agent having a functional group represented by the formula (1) bonded to a carrier: —Z—(CH2)n-S—R??(1) wherein R is a C1-18 chain hydrocarbon group, a C3-10 alicyclic hydrocarbon group, a C6-14 aromatic hydrocarbon group, a carboxymethyl group or a carboxyethyl group, n is an integer of from 1 to 4, and Z is an amide bond.
    Type: Application
    Filed: October 5, 2012
    Publication date: September 4, 2014
    Applicant: TOSOH CORPORATION
    Inventors: Yukinori Sudo, Takahiro Masuda, Setsuo Yoshida
  • Patent number: 8815760
    Abstract: The subject of the present invention relates to obtaining a zirconia sintered body having excellent in both properties of a translucency and a mechanical strength. The present invention relates to obtaining a high-strength zirconia sintered body having a translucency of an in-line transmission of 50% or more at a sample thickness of 1 mm for visible light at a wavelength of 600 nm and an average flexural strength of 300 MPa or more by subjecting a zirconia primary sintered body having an average grain size of 1 ?m or less and a relative density of 92% or more and the crystal phase composed of cubic crystals only to HIP treatment at a temperature of 1,250° C. to 1,600° C. and a pressure of at least 50 MPa. The primary sintered body is obtained by maintaining a molded body of a zirconia powder containing 7 mol % to 30 mol % of yttria at 1,100° C. to 1,300° C. for at least 5 hrs or by heating the molded body at a high rate of temperature rise of 500° C./hr or more.
    Type: Grant
    Filed: July 15, 2010
    Date of Patent: August 26, 2014
    Assignee: Tosoh Corporation
    Inventors: Masahiro Watanabe, Satoshi Kondoh, Koji Tsukuma
  • Publication number: 20140227456
    Abstract: An object of the present invention is to provide a method for producing a Group IV metal oxide film useful as a semiconductor element or an optical element at a low temperature. The present invention relates to a method for producing a Group IV metal oxide film, comprising coating a surface of a substrate with a film-forming material dissolved in an organic solvent, and subjecting the substrate to a heat treatment, an ultraviolet irradiation treatment, or both of these treatments, wherein a film-forming material obtained by reacting a vinylenediamide complex having a specific structure with an oxidizing agent such as oxygen gas, air, ozone, water and hydrogen peroxide is used as the film-forming material.
    Type: Application
    Filed: September 3, 2012
    Publication date: August 14, 2014
    Applicants: Sagami Chemical Research Institute, TOSOH CORPORATION
    Inventors: Tomoyuki Kinoshita, Kohei Iwanaga, Sachio Asano, Takahiro Kawabata, Noriaki Oshima, Satori Hirai, Yoshinori Harada, Kazuyoshi Arai, Ken-ichi Tada
  • Publication number: 20140227654
    Abstract: A zirconia sintered body having not only high strength but also excellent aesthetic properties. A colored translucent zirconia sintered body, characterized by containing an iron compound and from 2 to 4 mol % of yttria, showing a lightness L* of from 51 to 80 in L*a*b* color system, and having a relative density of at least 99.80%. The colored zirconia sintered body preferably has a total light transmittance of at least 20% as measured at a sample thickness of 1 mm and with a D65 light source. The colored translucent zirconia sintered body has aesthetic properties equivalent to those of natural teeth and is particularly suitable for a zirconia sintered body to be used for dental applications, and further, suitable for a mill blank such as an artificial tooth material or the like, and an orthodontic bracket.
    Type: Application
    Filed: July 27, 2012
    Publication date: August 14, 2014
    Applicant: TOSOH CORPORATION
    Inventors: Hiroyuki Fujisaki, Kiyotaka Kawamura, Kohei Imai
  • Publication number: 20140219903
    Abstract: The present invention relates to a film composed of a carbon-containing silicon oxide formed by CVD using, as the raw material, an organosilicon compound having a secondary hydrocarbon group directly bonded to at least one silicon atom and having an atomic ratio of 0.5 or less oxygen atom with respect to 1 silicon atom, which is used as a sealing film for a gas barrier equipment and materials, an FPD device, a semiconductor device and the like.
    Type: Application
    Filed: August 24, 2012
    Publication date: August 7, 2014
    Applicant: TOSOH CORPORATION
    Inventors: Daiji Hara, Masato Shimizu
  • Patent number: 8795626
    Abstract: A chabazite-type zeolite having copper and an alkali earth metal supported thereon. The alkali earth metal is preferably at least one metal selected from the group consisting of calcium, magnesium and barium. Moreover, the SiO2/Al2O3 molar ratio is preferably from 10 to 50, and the copper/aluminum atomic ratio is preferably from 0.15 to 0.25. This type of chabazite-type zeolite exhibits a higher nitrogen oxide purification rate after a hydrothermal durability treatment than those of conventional chabazite-type zeolite catalysts on which only copper is supported.
    Type: Grant
    Filed: December 27, 2011
    Date of Patent: August 5, 2014
    Assignee: Tosoh Corporation
    Inventors: Keisuke Tokunaga, Yuuki Ito
  • Patent number: 8796461
    Abstract: A 1,2,4,5-substituted phenyl compound represented by the formula (1): wherein one of X1-X5 is nitrogen and the remainders of X1-X5 are carbon; R1 and R2 represent hydrogen, C1-6 alkyl or C1-6 alkoxy; R3 and R4 represent C1-6 alkyl or C1-6 alkoxy; and m is an integer of 0-4, and n is an integer of 0-5. This compound is useful as a constituent for an organic electroluminescent device.
    Type: Grant
    Filed: March 16, 2011
    Date of Patent: August 5, 2014
    Assignee: Tosoh Corporation
    Inventors: Tsuyoshi Tanaka, Mayumi Abe, Nobumichi Arai, Naoki Uchida, Takashi Iida
  • Patent number: 8785008
    Abstract: The invention relates to the use of a sintered body obtained by subjecting a primary sintered body having a relative density of 95% or higher produced from a fine yttria-containing zirconia powder to HIP sintering at a temperature of 1,200-1,600° C. and a pressure of 50 MPa or higher. This sintered body is either a sintered body which has a total light transmittance, as measured at a thickness of 0.5 mm, of 43% or higher and a three-point bending strength of 1,700 MPa or higher or a zirconia sintered body which has a total light transmittance, as measured at a thickness of 1 mm, of 40% or higher and a three-point bending strength of 500 MPa or higher and which combines high strength and total light transmission.
    Type: Grant
    Filed: July 19, 2007
    Date of Patent: July 22, 2014
    Assignee: Tosoh Corporation
    Inventors: Isao Yamashita, Koji Tsukuma, Toru Tsuyoshi
  • Patent number: 8779018
    Abstract: In the present invention, a catalyst composition comprising the following amine compounds of (A) and (B) and/or (C) is used and further, a raw material-blended composition further containing a polyol component and water is used. (A) A quaternary ammonium salt represented by the following general formula (1): wherein each of R1 to R3 represents a hydrocarbon group having 1 to 12 carbon atoms, R4 represents an alkyl group or an aromatic hydrocarbon group having 1 to 18 carbon atoms, and X represents an organic acid group having an acid dissociation constant (pKa) of 4.8 or less; (B) A hydrophobic amine compound; (C) A heterocyclic tertiary amine compound.
    Type: Grant
    Filed: October 17, 2011
    Date of Patent: July 15, 2014
    Assignee: Tosoh Corporation
    Inventors: Katsumi Tokumoto, Yutaka Tamano
  • Patent number: 8779174
    Abstract: A subject for the invention is to provide novel titanium complexes which have a high vapor pressure and high thermal stability and serve as an excellent material for producing a titanium-containing thin film by a technique such as the CVD method or ALD method and to further provide processes for producing these complexes, titanium-containing thin films produced from the complexes, and a process for producing the thin films. The invention relates to producing a titanium complex represented by general formula (1): (wherein R1 and R4 each independently represent an alkyl group having 1-16 carbon atoms; R2 and R3 each independently represent a hydrogen atom or an alkyl group having 1-3 carbon atoms; and R5 represents an alkyl group which has 1-16 carbon atoms and may have been substituted with one or more fluorine atoms) and to producing a titanium-containing thin film using the complex.
    Type: Grant
    Filed: June 12, 2009
    Date of Patent: July 15, 2014
    Assignees: Tosoh Corporation, Sagami Chemical Research Institute
    Inventors: Ken-ichi Tada, Toshiki Yamamoto, Hirokazu Chiba, Kohei Iwanaga, Atsushi Maniwa, Tadahiro Yotsuya, Noriaki Oshima
  • Patent number: 8765008
    Abstract: Provided is a hydroxyalkylated polyalkylene polyamine composition, and a method for preparing the composition at low cost. Further disclosed is a method for producing a polyurethane resin by using the hydroxyalkylated polyalkylene polyamine composition containing at least two hydroxyalkylated polyalkylene polyamines as defined herein.
    Type: Grant
    Filed: March 16, 2012
    Date of Patent: July 1, 2014
    Assignee: Tosoh Corporation
    Inventors: Takahiro Masuda, Yutaka Tamano
  • Patent number: 8748644
    Abstract: This invention aims at providing (2,4-dimethylpentadienyl)-(ethylcyclopentadienyl)ruthenium which may contain its related structure compound, from which a ruthenium-containing thin film can be produced; a method of producing the same; a method of producing the ruthenium-containing thin film using the same; the ruthenium-containing thin film; and the like. The invention relates to producing the thin film using, as a precursor, (2,4-dimethylpentadienyl)(ethylcyclopentadienyl)ruthenium containing the related structure compound in an amount not more than 5% by weight, which can be obtained by separating the related structure compound from (2,4-dimethylpentadienyl)(ethylcyclopentadienyl)ruthenium containing the related structure compound.
    Type: Grant
    Filed: December 21, 2009
    Date of Patent: June 10, 2014
    Assignee: Tosoh Corporation
    Inventors: Taishi Furukawa, Noriaki Oshima, Kazuhisa Kawano, Hirokazu Chiba
  • Publication number: 20140153096
    Abstract: A resin composition containing a specific cellulose-based resin and a specific fumaric acid diester polymer in a specific blending ratio or containing, as the resin component, a specific cellulose-based resin and a specific fumaric acid diester polymer in a specific blending ratio and containing the resin component and an additive having an aromatic hydrocarbon ring or the like in a specific blending ratio. An optical compensation film can be produced using the resin composition.
    Type: Application
    Filed: July 26, 2012
    Publication date: June 5, 2014
    Applicant: TOSOH CORPORATION
    Inventors: Tohru Doi, Takahiro Kitagawa, Takashi Fukuda, Shinsuke Toyomasu
  • Patent number: 8742153
    Abstract: For forming a thin ruthenium film of good quality by CVD method, it is necessary to form the thin film at low temperature. There hence is a desire for a ruthenium compound having a high reactivity to heat. This invention relates to a method of producing a ruthenium-containing film by CVD or the like using, as a raw material, a ruthenium complex mixture containing (2,4-dimethylpentadienyl)(ethyl-cyclopentadienyl)ruthenium and bis(2,4-dimethylpentadienyl)ruthenium, the amount of the latter compound being 0.1 to 100% by weight based on the weight of (2,4-dimethylpentadienyl)(ethylcyclopentadienyl)ruthenium, and the like.
    Type: Grant
    Filed: November 29, 2010
    Date of Patent: June 3, 2014
    Assignee: Tosoh Corporation
    Inventors: Atsushi Maniwa, Noriaki Oshima, Kazuhisa Kawano, Taishi Furukawa, Hirokazu Chiba, Toshiki Yamamoto
  • Publication number: 20140145125
    Abstract: Translucent zirconia sintered bodies have had a problem that incorporation of titania improves translucency but lowers mechanical strength. The invention provides: a zirconia sintered body containing titanium oxide, the sintered body containing 6-15 mol % yttria and 3-20 mol % titania and having an in-line transmission of 50% or higher when examined at a sample thickness of 1 mm and a measuring wavelength of 600 nm; and a zirconia sintered body having especially high translucency which is a high-quality transparent zirconia sintered body that contains 3-20 mol % titania and 6-15 mol % yttria and has an in-line transmission, as measured at a wavelength of 600 nm, of 73% or higher and a haze value of 2.0% or less and that is highly translucent and is undimmed (cloudless). The invention further relates to a production process in which a powder having the composition is molded and thereafter subjected to ordinary-pressure primary sintering and hot isostatic pressing (HIP) under specific conditions.
    Type: Application
    Filed: January 30, 2014
    Publication date: May 29, 2014
    Applicant: TOSOH CORPORATION
    Inventors: Isao YAMASHITA, Masayuki KUDOU, Koji TSUKUMA
  • Patent number: 8735577
    Abstract: A 1,3,5-triazine derivative represented by the formula (1): wherein R1, R2 and R3 each independently represent a hydrogen atom or a methyl group; X represents a carbon atom or a nitrogen atom; Ar1 represents a substituted or unsubstituted aromatic hydrocarbon group; Ar2 represents an C1-4 alkyl-substituted or unsubstituted aromatic 6-membered heterocyclic group having one or two nitrogen atoms, which may be a condensed ring compound. An organic electroluminescent device comprising the 1,3,5-triazine derivative exhibits low power consumption and long lifetime.
    Type: Grant
    Filed: October 2, 2009
    Date of Patent: May 27, 2014
    Assignees: Tosoh Corporation, Sagami Chemical Research Institute
    Inventors: Hidenori Aihara, Akitoshi Ogata, Tsuyoshi Tanaka
  • Patent number: 8734992
    Abstract: Disclosed is an electrolytic manganese dioxide having an alkali potential of at least 310 mV, a full width at half maximum of the (110) plane in the XRD measurement using the CuK? line as the light source of from 2.2° to 3.0°, and a (110)/(021) peak intensity ratio in the X-ray diffraction spectrum of from 0.5 to 0.80. Also disclosed is a method for producing electrolytic manganese dioxide by electrolysis in an aqueous solution of a sulfuric acid/manganese sulfate mixture.
    Type: Grant
    Filed: February 4, 2008
    Date of Patent: May 27, 2014
    Assignee: Tosoh Corporation
    Inventors: Kazumasa Suetsugu, Shin Kumagai, Hiroshi Miura
  • Patent number: 8722555
    Abstract: Translucent zirconia sintered bodies have had a problem that incorporation of titania improves translucency but lowers mechanical strength. The invention provides: a zirconia sintered body containing titanium oxide, the sintered body containing 6-15 mol % yttria and 3-20 mol % titania and having an in-line transmission of 50% or higher when examined at a sample thickness of 1 mm and a measuring wavelength of 600 nm; and a zirconia sintered body having especially high translucency which is a high-quality transparent zirconia sintered body that contains 3-20 mol % titania and 6-15 mol % yttria and has an in-line transmission, as measured at a wavelength of 600 nm, of 73% or higher and a haze value of 2.0% or less and that is highly translucent and is undimmed (cloudless). The invention further relates to a production process in which a powder having the composition is molded and thereafter subjected to ordinary-pressure primary sintering and hot isostatic pressing (HIP) under specific conditions.
    Type: Grant
    Filed: June 3, 2010
    Date of Patent: May 13, 2014
    Assignee: Tosoh Corporation
    Inventors: Isao Yamashita, Masayuki Kudou, Koji Tsukuma