Abstract: A method for producing 2,2,2-trifluoroethanol in which a ?-hydroxybutyric acid salt is reacted with 1,1,1-trifluoro-2-chloroethane to generate 2,2,2-trifluoroethanol is provided. This method leads to increased yields of 2,2,2 -trifluoroethanol, facilitates the separation of salt byproducts and allows the recycling of an aprotic polar solvent. The present invention concerns a method for producing 2,2,2-trifluoroethanol in which a ?-hydroxybutyric acid salt is reacted with 1,1,1-trifluoro-2-chloroethane in an aprotic polar solvent to generate 2,2,2-trifluoroethanol. This method is characterized in that the ?-hydroxybutyric acid salt used contains no more than 6 wt % of 4,4?-oxybis(butyric acid).
Abstract: A process for producing a 2-fluoro-3-oxoalkylcarboxylic acid ester by fluorinating 3-oxoalkylcarboxylic acid ester with a fluorine gas is provided. The process is characterized in that the concentration of 3-oxoalkylcarboxylic acid ester in the reaction mixture for fluorination is maintained at 3 wt % or higher. Also provided is a process for purifying 2-fluoro-3-oxoalkylcarboxylic acid ester characterized in that 2-fluoro-3-oxoalkylcarboxylic acid ester is produced at high yield and with less impurities by washing fluorinated 3-oxoalkylcarboxylic acid ester with 3 or more times as much water as the amount of reaction mixture. According to the processes of the present invention, not only is the generation of unwanted by-products minimized, but fluorinated 3-oxoalkylcarboxylic acid ester can be purified in an efficient manner.
Abstract: A method for producing fluorinated alcohols from fluorinated alkyl halides can produce fluorinated alcohols at high product yield and at high selectivity in a single-step reaction. The method eliminates the need to use heavy metals and other toxic compounds that are difficult to handle or process. Specifically, the method produces a fluorinated alcohol represented by the following general formula (2): Rf(A)OH??(2) wherein Rf represents a perfluoroalkyl group having 1 to 10 carbon atoms; and A represents a straight-chained or branched saturated hydrocarbon group having 3 to 10 carbon atoms. The method is characterized in that it allows a fluorinated alkyl halide represented by the following general formula (1) to react with an alkali metal salt of 4-hydroxybutyrate in a gamma-butyrolactone solvent: Rf(A)X??(1) wherein Rf and A are as defined above; and X represents a halogen atom.