Patents Assigned to TOTAL RESEARCH & TECHNOLOGY FELUY
  • Patent number: 10100135
    Abstract: Processes for preparing a polyethylene in at least one continuously stirred tank reactor are described herein. The process may comprise the step of: polymerizing ethylene in the presence of at least one supported metallocene catalyst, a diluent, optionally one or more co-monomers, and optionally hydrogen, thereby obtaining the polyethylene, wherein the supported metallocene catalyst comprises a solid support, a co-catalyst and at least one metallocene, wherein the solid support has a surface area within the range of from 100 to 500 m2/g, and has a D50 value within the range of from 4 ?m to 18 ?m, with D50 being defined as the particle size for which fifty percent by weight of the particles has a size lower than the D50; and D50 being measured by laser diffraction analysis on a Malvern type analyzer. Polyethylene obtained by the disclosed process and articles comprising the polyethylene are also described.
    Type: Grant
    Filed: June 11, 2015
    Date of Patent: October 16, 2018
    Assignee: TOTAL RESEARCH & TECHNOLOGY FELUY
    Inventors: Aurelien Vantomme, Christopher Willocq, Alexandre Welle, Martine Slawinski
  • Patent number: 10093057
    Abstract: The present invention is a method to start-up a process to make expandable vinyl aromatic polymer pellets comprising, a) providing a pelletizer (S) containing means to introduce the molten vinyl aromatic polymer comprising the expandable agent and optionally additives, a die plate having a plurality of holes of small diameter, typically in the range 0.8 to 1.
    Type: Grant
    Filed: June 11, 2014
    Date of Patent: October 9, 2018
    Assignee: TOTAL RESEARCH & TECHNOLOGY FELUY
    Inventors: Michel Cassart, Francis Couget, Elena Prats
  • Patent number: 10093596
    Abstract: The present invention is, in a first embodiment, a process for removing oxygenated contaminants from an ethylene stream comprising: a) providing a dried ethylene stream (A) comprising essentially ethylene, up to 1 w % oxygenates, ethane, CO, CO2, H2, CH4 and C3+ hydrocarbons, b) sending said stream (A) to a stripper (also referred to as a demethanizer) to produce an overhead stream comprising essentially CO, H2 and CH4, a bottom stream comprising essentially ethylene, oxygenates, ethane, CO2 and C3+ hydrocarbons, c) sending said bottom stream of step b) to a deethanizer to produce a bottom stream comprising essentially ethane, oxygenates and C3+ hydrocarbons, an overhead stream consisting essentially of ethylene and CO2, d) sending said overhead of step c) to a fixed bed CO2 adsorption zone to recover an ethylene stream essentially free of CO2. In another embodiment the CO2 adsorption zone can be located at the inlet of the deethanizer. In another embodiment the demethanizer is replaced by two demethanizers.
    Type: Grant
    Filed: April 5, 2018
    Date of Patent: October 9, 2018
    Assignees: Total Research & Technology Feluy, IFP Energies Nouvelles
    Inventors: Babua Das, Manuela Arratia, Catherine Boutrot
  • Patent number: 10087325
    Abstract: Embodiments of polylactide based compositions are disclosed herein. The compositions may comprise at least one first polymer selected from polylactide-polybutadiene (PLA-PB) block copolymer, polylactide-urethane-polybutadiene block copolymer, or a mixture thereof; and at least one second polymer selected from polylactide, polylactide-urethane, or a mixture thereof. The composition may also comprise from 20% to 50% by weight of said first polymer based on the total weight of the composition and from 50% to 80% by weight of said second polymer based on the total weight of the composition. Embodiments of the present invention also relate to a process for preparing the polylactide based compositions and articles comprising the polylactide compositions.
    Type: Grant
    Filed: April 28, 2015
    Date of Patent: October 2, 2018
    Assignee: Total Research & Technology Feluy
    Inventor: Thierry Coupin
  • Patent number: 10072107
    Abstract: A process for preparing a long chain branched polypropylene in presence of two metallocene-based active catalyst systems is provided. The polypropylene obtained therefrom has new molecular architecture and improved elasticity properties. The polypropylene is further characterized by new signals in its 13C NMR spectrum.
    Type: Grant
    Filed: December 5, 2014
    Date of Patent: September 11, 2018
    Assignees: Total Research & Technology Feluy, Centre National de la Recherche Scientifique (CNRS)
    Inventors: Manuela Bader, Jean-françois Carpentier, Evgueni Kirillov, Olivier Lhost, Christian Lamotte, Katty Den Dauw
  • Patent number: 10053522
    Abstract: A metallocene-catalyzed polyethylene resin having a multimodal molecular weight and composition distribution, comprising from 45% by weight to 75% by weight of a low density fraction, said fraction having a density below or equal to 918 g/cm3 as measured following the method of standard test ISO 1183 at a temperature of 23° C., wherein the density of the polyethylene resin is from 0.920 to 0.945 g/cm3, wherein the Mw/Mn of the polyethylene is of from 2.8 to 6, wherein the melt index MI2 of the polyethylene resin of from 0.1 to 5 g/10 min measured following the method of standard test ISO 1133 Condition D at a temperature of 190° C. and under a load of 2.16 kg; and wherein the composition distribution breadth index (CDBI) of the polyethylene resin is below 70%, as analyzed by quench TREF (temperature rising elution fractionation) analysis.
    Type: Grant
    Filed: July 6, 2012
    Date of Patent: August 21, 2018
    Assignee: Total Research & Technology Feluy
    Inventors: Aurélien Vantomme, Pierre Bernard, Jacques Michel, Christopher Willocq, Armelle Sigwald
  • Patent number: 10053563
    Abstract: A process may include providing a polyethylene post consumer resin, providing a virgin polyethylene resin, and blending the polyethylene post consumer resin with the virgin polyethylene resin to produce a composition. The polyethylene post consumer resin may have an ESCR of at most 10 hours, a density ranging from 0.950 to 0.967 g/cm3, and an HLMI of 40 to 70 g/10 min. The virgin polyethylene resin may include fractions A and B, with fraction A having a higher molecular weight and lower density than fraction B. Fraction A may have an HL275 of at least 0.1 g/10 min and of at most 4 g/10 min, and a density of at least 0.920 g/cm3 and of at most 0.942 g/cm. The virgin polyethylene resin may have an HLMI of 5 to 75 g/10 min, and a density ranging from 0.945 to 0.960 g/cm3.
    Type: Grant
    Filed: July 2, 2015
    Date of Patent: August 21, 2018
    Assignee: TOTAL RESEARCH & TECHNOLOGY FELUY
    Inventors: Yves Trolez, Aurélien Vantomme, Jurjen Meeuwissen
  • Patent number: 10030098
    Abstract: A process for the manufacture of a block copolymer includes a reaction of a lactide monomers in the presence of a catalyst with a polymer to form the block copolymer having a lactic acid chain, wherein a polymer selected from polypropylene, polyethylene, polysiloxane, polybutylene succinate, polytrimethylene carbonate, polyester, polyether, polystyrene, polyisoprene, polycarbonate, polyalkylenecarbonate, polyvinyl alcohol, polyurethane, or polyacrylate; and wherein the polymer contains n number of OH and/or NH2 group(s), n is an integer greater than or equal to 1 and Moles ? ? of ? ? Lactide ( Moles ? ? of ? ? Compound * n ) ? 70 , and the reaction is performed at a temperature of at least 70° C. The process includes step of quenching of the reaction in order to form the lactic acid chains consisting of 70 or less of the lactide monomers, and the quenching agent is an acid chloride having a formula of Cl—CO—R9, wherein R9 is 1-pentenyl or aminoethyl.
    Type: Grant
    Filed: December 14, 2012
    Date of Patent: July 24, 2018
    Assignee: TOTAL RESEARCH & TECHNOLOGY FELUY
    Inventors: Martine Slawinski, Marion Helou, Jeroen Wassenaar
  • Patent number: 10023663
    Abstract: Propylene polymers having a melt flow index in the range from 3.0 dg/min to 8.0 dg/min can be particularly suited for high-tenacity fibers and yarns and nonwovens. The propylene polymers can be produced by a process that includes polymerizing propylene or propylene and at least one comonomer in presence of a Ziegler-Natta polymerization catalyst, an aluminium alkyl, and hydrogen.
    Type: Grant
    Filed: June 27, 2013
    Date of Patent: July 17, 2018
    Assignee: TOTAL RESEARCH & TECHNOLOGY FELUY
    Inventors: Peter Geeurickx, Alain Standaert, Jean-Luc Zuliani
  • Patent number: 10023667
    Abstract: Propylene homopolymers having a melt flow index in the range from 3.0 dg/min to 8.0 dg/min can be particularly suited for high-tenacity fibers and yarns and nonwovens. The propylene homopolymers can be produced by a process that can include polymerizing propylene in presence of a Ziegler-Natta polymerization catalyst, an aluminum alkyl, hydrogen and an optional external donor.
    Type: Grant
    Filed: June 27, 2013
    Date of Patent: July 17, 2018
    Assignee: TOTAL RESEARCH & TECHNOLOGY FELUY
    Inventors: Peter Geeurickx, Alain Standaert, Jean-Luc Zuliani
  • Patent number: 10016923
    Abstract: A polyethylene resin having a multimodal molecular weight distribution comprising at least two polyethylene fractions A and B, fraction A being substantially free of comonomer and having a lower weight average molecular weight and a higher density than fraction B, each fraction prepared in different reactors of two reactors connected in series in the presence of a Ziegler-Natta catalyst system, the polyethylene resin having a density of from 0.950 to 0.965 g/cm3 and a melt index MI2 of from 0.5 to 5 g/10 min.
    Type: Grant
    Filed: February 27, 2017
    Date of Patent: July 10, 2018
    Assignee: TOTAL RESEARCH & TECHNOLOGY FELUY
    Inventors: Jean-Marie Boissiere, Aurélien Vantomme, Pierre Belloir, Alain Van Sinoy
  • Patent number: 10011537
    Abstract: A process for obtaining a catalyst composite comprising the following steps: a). selecting a molecular sieve having pores of 10- or more-membered rings b). contacting the molecular sieve with a metal silicate different from said molecular sieve comprising at least one alkaline earth metal and one or more of the following metals: Ga, Al, Ce, In, Cs, Sc, Sn, Li, Zn, Co, Mo, Mn, Ni, Fe, Cu, Cr, Ti and V, such that the composite comprises at least 0.1 wt % of silicate.
    Type: Grant
    Filed: December 19, 2016
    Date of Patent: July 3, 2018
    Assignee: Total Research & Technology Feluy
    Inventors: Nikolai Nesterenko, Walter Vermeiren, Sander Van Donk
  • Patent number: 9994973
    Abstract: The present invention relates to fibers, particularly to as-spun fibers, having improved properties, in particular improved bonding performance and mechanical properties. In particular, the present invention relates to fibers comprising a metallocene random copolymer of propylene and one or more comonomers, said metallocene random copolymer having a broader molecular weight distribution. The present invention further relates to nonwovens comprising such fibers and to a process for producing such fibers and nonwovens. The fibers and the nonwovens of the present invention are characterized by improved properties, in particular improved bonding performance and mechanical properties, when compared to the prior art fibers and nonwovens.
    Type: Grant
    Filed: February 19, 2009
    Date of Patent: June 12, 2018
    Assignee: Total Research & Technology Feluy
    Inventors: John Bieser, Guillaume Pavy, Hugues Haubruge, Alain Standaert, William Rusty Wheat
  • Patent number: 9987810
    Abstract: The present invention discloses a single layer rotomolded article prepared from a blend of polyethylene, functionalized polyolefin and one or more resins selected from polyetherester or saturated polyester or polycarbonate or polyamide.
    Type: Grant
    Filed: February 24, 2014
    Date of Patent: June 5, 2018
    Assignee: TOTAL RESEARCH & TECHNOLOGY FELUY
    Inventor: Eric Maziers
  • Patent number: 9963409
    Abstract: The present invention is, in a first embodiment, a process for removing oxygenated contaminants from an ethylene stream comprising: a) providing a dried ethylene stream (A) comprising essentially ethylene, up to 1 w % oxygenates, ethane, CO, CO2, H2, CH4 and C3+ hydrocarbons, b) sending said stream (A) to a stripper (also referred to as a demethanizer) to produce an overhead stream comprising essentially CO, H2 and CH4, a bottom stream comprising essentially ethylene, oxygenates, ethane, CO2 and C3+ hydrocarbons, c) sending said bottom stream of step b) to a deethanizer to produce a bottom stream comprising essentially ethane, oxygenates and C3+ hydrocarbons, an overhead stream consisting essentially of ethylene and CO2, d) sending said overhead of step c) to a fixed bed CO2 adsorption zone to recover an ethylene stream essentially free of CO2. In another embodiment the CO2 adsorption zone can be located at the inlet of the deethanizer. In another embodiment the demethanizer is replaced by two demethanizers.
    Type: Grant
    Filed: June 6, 2017
    Date of Patent: May 8, 2018
    Assignees: IFP Energies Nouvelles, Total Research & Technology Feluy
    Inventors: Babua Das, Manuela Arratia, Catherine Boutrot
  • Patent number: 9962911
    Abstract: A multilayer article prepared by rotational moulding can include a layer A that is a polyolefin (PO) based layer prepared from PO and a functionalised polyolefin (FPO), or a PO grafter to a non-polyolefin (NPO) in the form of a block copolymer (PO-g-NPO). A layer B can be a PO that is dissimilar from layer A, an NPO, a mixture thereof, and optionally an FPO or a PO-g-NPO. A layer C can be dissimilar from layer A and similar to or dissimilar from layer B. Layer C can be adjacent to layer A and/or layer B, can have good adhesion to layer A and/or layer B, and is not a blend of layer A and layer B. A method of preparing the multilayer article can include rotational moulding.
    Type: Grant
    Filed: April 27, 2012
    Date of Patent: May 8, 2018
    Assignee: Total Research & Technology Feluy
    Inventors: Eric Maziers, Gregory O'Brien, Bruce Clay
  • Patent number: 9951214
    Abstract: An article is provided that includes a blend. The blend includes from at least 5.0% to at most 20.0% by weight of polylactic acid (PLA), based on the total weight of the blend; at least 5.0% to at most 92.0% by weight of polypropylene (PP) or of a mixture of polypropylene (PP) and polyethylene (PE), based on the total weight of the blend; from 0.0% to at most 40.0% by weight of an inorganic filler, based on the total weight of the blend; at least 0.1% to at most 10.0% by weight of a compatibilizer, based on the total weight of the blend; and at least 0.1% to at most 40.0% by weight of an elastomer, based on the total weight of the blend. The elastomer is ethylene octene rubber or ethylene butene monomer rubber. The article is at least partially coated with at least one coating.
    Type: Grant
    Filed: March 4, 2014
    Date of Patent: April 24, 2018
    Assignee: TOTAL RESEARCH & TECHNOLOGY FELUY
    Inventor: Gabriel Desille
  • Patent number: 9932427
    Abstract: The invention relates to a pipe comprising at least one metallocene-catalyzed polyethylene resin, wherein the polyethylene resin has a multimodal molecular weight distribution and comprises at least two metallocene-catalyzed polyethylene fractions A and B, wherein fractions A and B are prepared in different reactors of at least two reactors connected in series, wherein the polyethylene resin comprises: at least 30% by weight and at most 50% by weight of the polyethylene fraction A, based on the total weight of the polyethylene resin, wherein fraction A has a melt index MI2 of at least 50 g/10 min as determined on the fluff of fraction A according to ISO 1133:1997 condition D at a temperature of 190° C. and under a load of 2.16 kg; wherein fraction B has a density of at most 0.9210 g/cm3; and wherein the polyethylene resin has a melt index MI5 of at least 0.10 g/10 min and of at most 1.0 g/10 min as determined according to ISO 1133:1997, condition T, at 190° C.
    Type: Grant
    Filed: April 23, 2015
    Date of Patent: April 3, 2018
    Assignee: Total Research & Technology Feluy
    Inventors: Olivier Lhost, Jacques Michel
  • Patent number: 9919491
    Abstract: Multilayer articles having reinforced structural properties are prepared by rotational molding of external and internal skin layers prepared from polyethylene resin and an intermediate layer prepared from foamed polyethylene. The composition of the external layer is fed as a dry blend into a mold, and the mold is placed in a pre-heated oven and rotated. The composition of the intermediate layer is fed as a dry blend into the mold, and the mold is placed in a pre-heated oven and rotated. The composition of the internal layer is fed as a dry blend into the mold, and the mold is placed in a pre-heated oven and rotated.
    Type: Grant
    Filed: February 3, 2015
    Date of Patent: March 20, 2018
    Assignee: TOTAL RESEARCH & TECHNOLOGY FELUY
    Inventor: Eric Maziers
  • Patent number: 9920172
    Abstract: A method can include consecutively batch processing at least two different polyethylene grades in pellet form in a pellet handling unit. A ratio of a melt flow index (MI) of a first polyethylene in pellet form (MIf) to a MI of a later processed polyethylene in pellet form (MIl) can be smaller than 0.30. The method can include processing an intermediate polyethylene grade in pellet form. An amount of intermediate polyethylene grade processed can be at most 1/100th of a handling capacity of the pellet handling unit. The intermediate polyethylene grade can have the same MI as the later processed polyethylene in pellet form.
    Type: Grant
    Filed: January 24, 2012
    Date of Patent: March 20, 2018
    Assignee: TOTAL RESEARCH & TECHNOLOGY FELUY
    Inventors: Peter Stevens, Franky Fant, Daan Dewachter, Alain Brusselle