Patents Assigned to Toyota Motor Corporation
  • Patent number: 9238460
    Abstract: Systems for managing downshifts in hybrid-electric vehicles are disclosed. The systems include a multispeed transmission, an internal combustion engine selectively coupled to the multispeed transmission, an electric motor coupled to the multispeed transmission, and an electronic control unit. The electronic control unit is programmed to evaluate a torque demand, start the internal combustion engine, and pre-stage a downshift shift sequence by partially disengaging a second shift clutch and partially engaging a first shift clutch. The electronic control unit is also programmed to interrupt the downshift shift sequence until a pre-determined torque supplemental event occurs and later complete the downshift shift sequence by modifying the hydraulic pressure through the valve body to completely disengage a second gear set from the input shaft with the second shift clutch and completely engage a first gear set and the input shaft with the first shift clutch.
    Type: Grant
    Filed: July 23, 2014
    Date of Patent: January 19, 2016
    Assignees: TOYOTA MOTOR CORPORATION, FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Hong Jiang, Roger Lyle Huffmaster, Marvin Paul Kraska, Bernard D. Nefcy, Seiji Kuwahara
  • Patent number: 9229140
    Abstract: The present invention provides an omnidirectional ultraviolet (UV)-infrared (IR) reflector. The omnidirectional UV-IR reflector includes a multilayer stack having at least three layers, the at least three layers having at least one first index of refraction material A1 and at least one second index of refraction layer B1. The at least one first index of refraction material layer and the at least one second index of refraction material layer can be alternately stacked on top of each other to provide the at least three layers. In addition, the at least one first index of refraction material layer and the at least one second index of refraction material layer each have a predefined thickness of dA1 and dB1, respectively, with the thickness dA1 not being generally equal to the dB1 thickness such that the multilayer stack has a non-periodic layered structure.
    Type: Grant
    Filed: January 26, 2011
    Date of Patent: January 5, 2016
    Assignees: Toyota Motor Engineering & Manufacturing North America, Inc., Toyota Motor Corporation
    Inventors: Debasish Banerjee, Minjuan Zhang, Masahiko Ishii
  • Patent number: 9193873
    Abstract: Protein-polymer composite materials are provided according to embodiments of the present invention that include an admixture of a polymer resin, a surfactant and a non-aqueous organic solvent. An aqueous solution containing bioactive proteins is mixed with the admixture. The emulsion is mixed with a crosslinker to produce a curable composition. The curable composition is cured, thereby producing the protein-polymer composite material that is useful for facilitating removal of bioorganic stains.
    Type: Grant
    Filed: January 28, 2014
    Date of Patent: November 24, 2015
    Assignees: Toyota Motor Engineering & Manufacturing North America, Inc., Toyota Motor Corporation, Regents of the University of Minnesota
    Inventors: Ping Wang, Songtao Wu, Hongfei Jia, Masahiko Ishii, Minjuan Zhang, Xiaodong Tong
  • Patent number: 9121016
    Abstract: Bioactive coatings that are stabilized against inactivation by weathering are provided including a base associated with a chemically modified enzyme, and, optionally a first polyoxyethylene present in the base and independent of the enzyme. The coatings are optionally overlayered onto a substrate to form an active coating facilitating the removal of organic stains or organic material from food, insects, or the environment.
    Type: Grant
    Filed: September 9, 2011
    Date of Patent: September 1, 2015
    Assignees: Toyota Motor Engineering & Manufacturing North America, Inc., Toyota Motor Corporation, Regents of the University of Minnesota
    Inventors: Hongfei Jia, Ping Wang, Liting Zhang, Andreas Buthe, Xueyan Zhao, Songtao Wu, Masahiko Ishii, Minjuan Zhang
  • Patent number: 9067790
    Abstract: A vapor deposition process for the preparation of a chemical compound, wherein the process comprises providing each component element of the chemical compound as a vapor, and co-depositing the component element vapors on a common substrate, wherein: the vapor of at least one component element is provided using a cracking source; the vapor of at least one other component element is provided using a plasma source; and at least one further component element vapor is provided; wherein the component elements react on the substrate to form the chemical compound.
    Type: Grant
    Filed: July 20, 2012
    Date of Patent: June 30, 2015
    Assignees: Ilika Technologies Ltd., Toyota Motor Corporation
    Inventors: Brian Elliott Hayden, Christopher Edward Lee, Duncan Clifford Alan Smith, Mark Stephen Beal, Xiaojuan Lu, Chihiro Yada
  • Patent number: 9061709
    Abstract: A structural body part and a method of assembling a structural body part are provided. The structural body part includes an inner wall surface defining an enclosed space. A nut is disposed within the enclosed space. The structural body part includes an aperture for receiving a fastener so as to accommodate the addition of additional structure. The body structure includes a spacer. The nut is attached to the spacer. The spacer is configured to suspend the nut above the inner wall surface of the structural body part. Thus, the inner wall surface of the structural body part is exposed and covered with a solution when submersed therein.
    Type: Grant
    Filed: November 26, 2012
    Date of Patent: June 23, 2015
    Assignees: Toyota Motor Engineering & Manufacturing North America, Inc., Toyota Motor Corporation
    Inventors: Naipaul D. Ramoutar, Taichi Yamashita, Koji Saeki
  • Patent number: 9063291
    Abstract: An omnidirectional structural color (OSC) having a non-periodic layered structure. The OSC can include a multilayer stack that has an outer surface and at least two layers. The at least two layers can include at least one first index of refraction material layer A1 and at least one second index of refraction material layer B1. The at least A1 and B1 can be alternately stacked on top of each other with each layer having a predefined thickness dA1 and dB1, respectively. The dA1 is not generally equal to the dB1 such that the multilayer stack has a non-periodic layered structure.
    Type: Grant
    Filed: February 5, 2011
    Date of Patent: June 23, 2015
    Assignees: Toyota Motor Engineering & Manufacturing North America, Inc., Toyota Motor Corporation
    Inventors: Debasish Banerjee, Minjuan Zhang, Masahiko Ishii
  • Patent number: 9012108
    Abstract: Embodiments of the present anhydrous fuel cell electrodes comprise an anhydrous catalyst layer and a gas diffusion layer, wherein the anhydrous catalyst layer comprises at least one catalyst, about 5 mg/cm2 to about 100 mg/cm2 of phosphoric acid added as a catalyzing reagent during formation of the catalyst layer, and a binder comprising at least one triazole modified polymer, wherein the triazole modified polymer comprises a polysiloxane backbone and a triazole substituent.
    Type: Grant
    Filed: April 25, 2011
    Date of Patent: April 21, 2015
    Assignees: Toyota Motor Engineering & Manufacturing North America, Inc., Toyota Motor Corporation, Georgia Tech Research Corporation
    Inventors: Meilin Liu, Xiaobing Zhu, Min Kyu Song, John G. Muldoon, Kohei Hase
  • Patent number: 9012196
    Abstract: A substrate or coating is provided that includes a lipase with enzymatic activity toward a component of a fingerprint. Also provided is a process for facilitating the removal of fingerprints is provided wherein an inventive substrate or coating including a lipase is capable of enzymatically degrading of one or more components of the fingerprint to facilitate fingerprint removal from the substrate or said coating. Applying heat to the substrate or coating increases the rate of fingerprint removal.
    Type: Grant
    Filed: February 4, 2013
    Date of Patent: April 21, 2015
    Assignees: Toyota Motor Engineering & Manufacturing North America, Inc., Toyota Motor Corporation, Regents of the University of Minnesota
    Inventors: Andreas Buthe, Ping Wang, Songtao Wu, Hongfei Jia, Masahiko Ishii, Minjuan Zhang
  • Patent number: 8968534
    Abstract: A process for oxidizing water using amorphous cobalt tungstate is disclosed. A plurality of amorphous cobalt tungstate nanoparticles are supported on an electrode and are able to catalytically interact with water molecules generating oxygen. The catalyst can be used as part of a electrochemical or photo-electrochemical cell for the generation of electrical energy.
    Type: Grant
    Filed: January 31, 2012
    Date of Patent: March 3, 2015
    Assignees: Toyota Motor Egineering & Manufacturing North America, Inc., Toyota Motor Corporation
    Inventors: Hongfei Jia, Takeshi Sekito
  • Patent number: 8967700
    Abstract: A motor vehicle includes a first side member having first lower and upper darts. The motor vehicle also includes a second side member parallel with and spaced apart from the first side member, the second side member having second lower and upper darts. The upper darts are positioned between the lower darts and end portions of the respective first or second side members. The motor vehicle further includes first and second bumper brackets coupled to the end portion of the respective first or second side members, a bumper reinforcement member coupled to the first and second bumper brackets, and a counter rotation bracket coupled to the bumper reinforcement member and extending upwards from the bumper reinforcement member. The lower darts and the upper darts form a preferential buckling zone of the first and the second side members.
    Type: Grant
    Filed: March 6, 2013
    Date of Patent: March 3, 2015
    Assignees: Toyota Motor Engineering & Manufacturing North America, Inc., Toyota Motor Corporation
    Inventors: Paul Maria-Antonius Slaats, Kanichi Saito, Paxton Steven Williams, Joseph Charles Walusek, Sagar Vilas Kulkarni
  • Patent number: 8922098
    Abstract: A device (100) harvests energy from vibration and/or strain and utilizes both capacitive (102a, 102b) and piezoelectric elements (105). The principle of operation is out-of-plane capacitive harvester, where the bias voltage for the capacitive element is generated with a piezoelectric element (105). The device utilizes a thin dielectric film (104) between the capacitor plates (102a, 102b) maximizing the harvested energy and enabling the harvester operation in semi-contact mode so that short circuits are prevented. For example when utilized in a wheel or the like, the capacitor is closed and opened at every strike or every turn of a wheel being thus independent of the harvester's mechanical resonance frequency.
    Type: Grant
    Filed: October 8, 2010
    Date of Patent: December 30, 2014
    Assignees: VTI Technologies Oy, Toyota Motor Corporation
    Inventors: Anna-Maija Karkkainen, Jukka Kyynarainen, Leif Roschier, Heikki Kuisma
  • Patent number: 8911986
    Abstract: Temporary active coatings that are stabilized against inactivation by weathering are provided including a base associated with a chemically modified enzyme, and, optionally a first polyoxyethylene present in the base and independent of the enzyme. The coatings are optionally overlayered onto a substrate to form an active coating facilitating the removal of organic stains or organic material from food, insects, or the environment.
    Type: Grant
    Filed: April 29, 2011
    Date of Patent: December 16, 2014
    Assignees: Toyota Motor Engineering & Manufacturing North America, Inc., Toyota Motor Corporation
    Inventors: Hongfei Jia, Songtao Wu, Masahiko Ishii, Minjuan Zhang
  • Patent number: 8877317
    Abstract: A foam filled panel with decorative thread stitching is provided. In addition, the stitching can be sealed to prevent leakage of foam when it is injected between a substrate and a skin layer to provide a foam filled panel. The decorative thread stitching can be sewn into the skin layer of the foam filled panel before the panel is assembled and filled with injectable foam. In addition, the skin can be made via slush molding, which allows various features and details to be molded into the skin. In some instances, the stitching can be sealed by adhesively attaching an impermeable membrane along a length of the stitching, thereby covering all the openings. In other instances, the stitching is sealed by using an expandable thread. Also disclosed is a process for manufacturing a foam filled panel with decorative thread stitching.
    Type: Grant
    Filed: March 30, 2012
    Date of Patent: November 4, 2014
    Assignees: Toyota Motor Engineering & Manufacturing North America, Inc., Toyota Motor Corporation
    Inventors: Kerry Scott Zellner, Jr., Chase Perry Nelson, Timothy A. Pittaluga, Michael Brent Hampton, Garland Wayne Brookshire, Takashi Niwa
  • Patent number: 8861087
    Abstract: A multi-layer photonic structure may include alternating layers of high index material and low index material having a form [H(LH)N] where, H is a layer of high index material, L is a layer of low index material and N is a number of pairs of layers of high index material and layers of low index material. N may be an integer ?1. The low index dielectric material may have an index of refraction nL from about 1.3 to about 2.5. The high index dielectric material may have an index of refraction nH from about 1.8 to about 3.5, wherein nH>nL and the multi-layer photonic structure comprises a reflectivity band of greater than about 200 nm for light having angles of incidence from about 0 degrees to about 80 degrees relative to the multi-layer photonic structure. The multi-layer photonic structure may be incorporated into a paint or coating system thereby forming an omni-directional reflective paint or coating.
    Type: Grant
    Filed: February 19, 2009
    Date of Patent: October 14, 2014
    Assignee: Toyota Motor Corporation
    Inventors: Debasish Banerjee, Benjamin Alan Grayson, Minjuan Zhang, Masahiko Ishii
  • Publication number: 20140287160
    Abstract: The present invention provides a vapour deposition process for the preparation of a phosphate compound, wherein the process comprises providing each component element of the phosphate compound as a vapour, and co-depositing the component element vapours on a common substrate, wherein the component elements react on the substrate to form the phosphate compound.
    Type: Application
    Filed: July 20, 2012
    Publication date: September 25, 2014
    Applicants: TOYOTA MOTOR CORPORATION, ILIKA TECHNOLOGIES LTD.
    Inventors: Brian Elliott Hayden, Christopher Edward Lee, Duncan Clifford Alan Smith, Mark Stephen Beal, Xiaojuan Lu, Chihiro Yada
  • Patent number: 8796009
    Abstract: A substrate or coating is provided that includes a protease with enzymatic activity toward a component of a biological stain. Also provided is a process for facilitating the removal of a biological stain is provided wherein an inventive substrate or coating including a protease is capable of enzymatically degrading of one or more components of the biological stain to facilitate biological stain removal from the substrate or said coating.
    Type: Grant
    Filed: June 21, 2010
    Date of Patent: August 5, 2014
    Assignees: Toyota Motor Engineering & Manufacturing North America, Inc., Toyota Motor Corporation
    Inventors: Hongfei Jia, Wei Song, Masahiko Ishii, Minjuan Zhang
  • Patent number: 8749881
    Abstract: Disclosed is a multilayer structure wherein a first layer of a first material having an outer surface and a refracted index between 2 and 4 extends across an outer surface of a second layer having a refractive index between 1 and 3. The multilayer stack has a reflective band of less than 200 nanometers when viewed from angles between 0° and 80° and can be used to reflect a narrow range of electromagnetic radiation in the ultraviolet, visible and infrared spectrum ranges. In some instances, the reflection band of the multilayer structure is less than 100 nanometers. In addition, the multilayer structure can have a quantity defined as a range to mid-range ratio percentage of less than 2%.
    Type: Grant
    Filed: February 18, 2009
    Date of Patent: June 10, 2014
    Assignees: Toyota Motor Engineering & Manufacturing North America, Inc., Toyota Motor Corporation
    Inventors: Debasish Banerjee, Masahiko Ishii, Minjuan Zhang
  • Patent number: 8736959
    Abstract: An omnidirectional reflector that reflects a band of electromagnetic radiation of less than 100 nanometers when viewed from angles between 0 and 45 degrees is provided. The omnidirectional reflector includes a multilayer stack having a plurality of layers of high index of refraction material and a plurality of layers of low index of refraction material. In addition, the plurality of high index of refraction material layers and low index of refraction material layers are alternately stacked on top of or across each other and provide a non-periodic layered structure.
    Type: Grant
    Filed: June 4, 2010
    Date of Patent: May 27, 2014
    Assignees: Toyota Motor Engineering & Manufacturing North America, Inc., Toyota Motor Corporation
    Inventors: Benjamin Alan Grayson, Debasish Banerjee, Minjuan Zhang, Masahiko Ishii
  • Publication number: 20140141490
    Abstract: Protein-polymer composite materials are provided according to embodiments of the present invention that include an admixture of a polymer resin, a surfactant and a non-aqueous organic solvent. An aqueous solution containing bioactive proteins is mixed with the admixture. The emulsion is mixed with a crosslinker to produce a curable composition. The curable composition is cured, thereby producing the protein-polymer composite material that is useful for facilitating removal of bioorganic stains.
    Type: Application
    Filed: January 28, 2014
    Publication date: May 22, 2014
    Applicants: Toyota Motor Engineering & Manufacturing North America, Inc., Regents of the University of Minnesota, Toyota Motor Corporation
    Inventors: Ping Wang, Songtao Wu, Hongfei Jia, Masahiko Ishii, Minjuan Zhang, Xiaodong Tong