Patents Assigned to TPC Group
  • Patent number: 11326004
    Abstract: Isobutylene copolymer includes repeat units derived from isobutylene and one or more comonomers selected from isoprene, butadiene, cyclopentadiene, dicyclopentadiene, limonene, substituted styrenes, and C4 to C10 dienes other than isoprene, butadiene, limonene, cyclopentadiene, or dicyclopentadiene, wherein the molar ratio of isobutylene derived repeat units to the comonomer derived repeat units is from 75:1 to 1.5:1. The copolymers have a molecular weight, Mn, of from 200 to 20,000 Daltons and typically have a high double bond content and a high vinylidene double bond content when diene monomers are utilized.
    Type: Grant
    Filed: October 12, 2018
    Date of Patent: May 10, 2022
    Assignee: TPC GROUP LLC
    Inventors: Rajeev Kumar, André M. Gobin, George Pappas, James A. Hopson, Michael O. Nutt, Peggy J. Macatangay, Randall V. Redd
  • Patent number: 11208511
    Abstract: Non-random isobutylene copolymer includes repeat units derived from isobutylene and one or more comonomers selected from isoprene, butadiene, cyclopentadiene, dicyclopentadiene, limonene, substituted styrenes, and C4 to C10 dienes other than isoprene, butadiene, limonene, cyclopentadiene, or dicyclopentadiene, wherein the molar ratio of isobutylene derived repeat units to the comonomer derived repeat units is from 75:1 to 1.5:1. The non-random copolymers have a molecular weight, Mn, of from 200 to 20,000 Daltons and typically have a high double bond content and a high vinylidene double bond content when diene monomers are utilized.
    Type: Grant
    Filed: October 12, 2018
    Date of Patent: December 28, 2021
    Assignee: TPC Group LLC
    Inventors: André M. Gobin, Rajeev Kumar, George Pappas, James A. Hopson, Michael O. Nutt, Peggy J. Macatangay, Randall V. Redd
  • Patent number: 10947324
    Abstract: A flexible manufacturing system for selectively producing different alpha-olefins from ethylene includes: (a) a reaction section 18 with ethylene feed operative to oligomerize ethylene; (b) a catalyst feed system 12, 14, 16 comprising a plurality of independent homogeneous catalyst feeders connected with the reaction section for alternatively providing different selective homogeneous catalyst compositions to the reaction section; (c) an ethylene recycle column 22 coupled to the reaction section and adapted to receive crude product and unreacted ethylene therefrom, the recycle column being operative to separate ethylene and optionally lower oligomers from the crude product which are recycled to the ethylene feed to the reaction section, the ethylene recycle column being further operative to provide a crude product bottoms stream; (d) a catalyst removal section 20 coupled to the reaction section adapted to remove spent catalyst from the system; and (e) a first product separation column 24 connected to the recyc
    Type: Grant
    Filed: February 28, 2020
    Date of Patent: March 16, 2021
    Assignee: TPC Group LLC
    Inventors: Michael O. Nutt, Baiyi Zhao
  • Patent number: 10836690
    Abstract: A dehydrogenation system includes a plurality of dehydrogenation reactors valved to operate in alternating dehydrogenation modes and regeneration modes in a timed sequence in a system cycle by way of the plurality of valves; a digital programmable controller connected to the plurality of valves for sequencing the reactors; and means for determining the productivity characteristics of each reactor over a system cycle. The digital controller is operable to re-sequence the reactors to reduce either peak productivity or productivity deltas over an initial system cycle. After resequencing, production may be increased with the more uniform productivity profile of the re-sequenced system without exceeding system limits, such as compressor operating limits.
    Type: Grant
    Filed: September 30, 2019
    Date of Patent: November 17, 2020
    Assignee: TPC Group LLC
    Inventors: Joseph G. Duff, David S. Hager, Gilbert D. Valdez, Joseph A. Comeaux, Michael O. Nutt
  • Patent number: 10544071
    Abstract: The process to recover heat in oxidative dehydrogenation of butene to butadiene is presented. The process utilizes heat recovered in oxidative dehydrogenation of butene to butadiene to generate steam. The process utilizes the circulated water stream generated in oxidative dehydrogenation of butene to butadiene for steam generation. A feedstream comprising butene is mixed with steam and preheated air at the inlet of the oxidative dehydrogenation reactor.
    Type: Grant
    Filed: May 2, 2018
    Date of Patent: January 28, 2020
    Assignees: UOP LLC, TPC Group LLC
    Inventors: John J. Senetar, Joseph G. Duff, Jillian M. Horn, Clifford A. Maat, Michael O. Nutt
  • Patent number: 10538466
    Abstract: A process is presented for the production of butadienes. The process includes the separation of oxygenates from the product stream from an oxidative dehydrogenation reactor. The process includes quenching the product stream and solvent and oxygenates from the product stream. The oxygenates are stripped from the solvent with an inert gas to reduce the energy consumption of the process, and the solvent is recycled and reused in the process.
    Type: Grant
    Filed: May 2, 2018
    Date of Patent: January 21, 2020
    Assignees: UOP LLC, TPC Group, LLC
    Inventors: John J. Senetar, Jeannie M. Blommel, Charles P. Luebke, Dana K. Sullivan, Joseph G. Duff, Jillian M. Horn, Clifford A. Maat, Michael O. Nutt
  • Patent number: 10526259
    Abstract: A process is presented for the oxidative dehydrogenation of butenes to butadienes. The process includes the use of parallel reactors, wherein the reactors are operated at different pressures. A butene feedstream is split into several portions wherein each portion is passed to a different reactor. Each reactor generates an effluent stream, and the effluent stream is cooled to generate steam for use in a lower pressure reactor.
    Type: Grant
    Filed: August 25, 2016
    Date of Patent: January 7, 2020
    Assignees: UOP LLC, TPC Group LLC
    Inventors: John J. Senetar, Jillian M. Horn
  • Patent number: 10155704
    Abstract: Processes and apparatuses for the production of butadienes are provided. In an embodiment, a process for production of butadienes includes passing a reactor feed stream comprising a hydrocarbon stream comprising butene, a steam stream and a oxygen rich stream to a dehydrogenation reactor. The reactor feed stream is oxidatively dehydrogenated in the dehydrogenation reactor in presence of an oxidative dehydrogenation catalyst to provide an effluent stream comprising butadiene. The effluent stream is cooled in a quench tower to provide a cooled effluent stream and a bottoms water stream. The cooled effluent stream is passed to an aldehyde scrubber to provide a scrubbed effluent stream and a spent water stream comprising aldehydes. A first portion of the bottoms water stream is passed from the quench tower to the aldehyde scrubber.
    Type: Grant
    Filed: October 20, 2017
    Date of Patent: December 18, 2018
    Assignees: UOP LLC, TPC Group, LLC
    Inventors: Jeannie Mee Blommel, Charles P. Luebke, Clifford A. Maat
  • Publication number: 20180327337
    Abstract: A process is presented for the oxidative dehydrogenation of butenes to butadienes. The process includes the use of parallel reactors, wherein the reactors are operated at different pressures. A butene feedstream is split into several portions wherein each portion is passed to a different reactor. Each reactor generates an effluent stream, and the effluent stream is cooled to generate steam for use in a lower pressure reactor.
    Type: Application
    Filed: August 25, 2016
    Publication date: November 15, 2018
    Applicants: UOP LLC, TPC Group
    Inventors: John J. Senetar, Jillian Marie Horn
  • Patent number: 10052608
    Abstract: An apparatus for producing butadiene by way of oxidative dehydrogenation of a butene-rich feed stream includes: (a) a reactor adapted for receiving said butene-rich feed stream and converting butenes to butadiene, thereby providing a butadiene enriched product effluent stream; (b) a superheater coupled to the reactor to receive the butadiene enriched product effluent stream from the reactor as well as being configured to receive reactor feed, said superheater transferring sensible heat from the butadiene enriched product effluent stream to reactor feed and (c) a first feed-vaporizer coupled to the superheater to receive the butadiene enriched product effluent stream as it exits the superheater and to transfer sensible heat from the butadiene enriched product effluent stream to reactor feed. Also provided are (d) a second feed vaporizer; (e) a purification train; and (f) a thermal oxidizer.
    Type: Grant
    Filed: April 11, 2017
    Date of Patent: August 21, 2018
    Assignee: TPC Group LLC
    Inventors: Liana Caciula, Joseph G. Duff, Elizabeth Ballard, Sirisha Chada, Mark J. Potter
  • Patent number: 10035136
    Abstract: The present invention discloses a process to treat a ferrite based catalyst useful in the oxidative dehydrogenation of monololefins and diolefins which process includes a preheat step prior to use of the catalyst in the OXO-D reactor. The catalyst is preferably a zinc ferrite catalyst for the production of butadiene. It has been observed that substantially no nitrogen oxide emissions result from the use of this treated catalyst in the reactor unit during the oxidative dehydrogenation reaction.
    Type: Grant
    Filed: March 25, 2015
    Date of Patent: July 31, 2018
    Assignee: TPC Group LLC
    Inventors: Joseph G. Duff, Jillian M. Horn, Michael O. Nutt, George S. Pappas
  • Patent number: 10035740
    Abstract: A method of oxidatively dehydrogenating a dehydrogenation reactant includes providing a first gaseous feed stream to a first adiabatic, catalytic reaction zone with less than a stoichiometric amount of oxygen and superheated steam, oxidatively dehydrogenating dehydrogenation reactant in said first adiabatic, catalytic reaction zone and subsequently cooling the effluent, adding additional oxygen and reacting the effluent stream in at least one subsequent adiabatic reaction zone. The dehydrogenation system enables higher conversion and yield per pass and in some cases greatly reduces steam usage and energy costs. In a preferred integrated process, ethylene is converted to n-butene which is then oxidatively dehydrogenated to butadiene.
    Type: Grant
    Filed: March 7, 2014
    Date of Patent: July 31, 2018
    Assignee: TPC Group LLC
    Inventors: Clifford Alan Maat, Joseph G. Duff, Liana Caciula, Michael O. Nutt, Robert Z. Confair, Mark P. Kaminsky, Jillian M. Horn, Gus K. Georgeton
  • Patent number: 10035741
    Abstract: A method of oxidatively dehydrogenating a n-butenes to butadiene includes oxidatively dehydrogenating dehydrogenation reactant in a first adiabatic, catalytic reaction zone to provide a first-stage effluent stream enriched in butadiene at a first-stage effluent temperature above the first-stage inlet temperature, cooling the first-stage effluent stream in a first heat transfer zone to a second-stage inlet temperature lower than said first-stage effluent temperature to provide a second gaseous feed stream comprising superheated steam, n-butene and butadiene, wherein the second stage inlet temperature is lower than said first stage effluent temperature and oxidatively dehydrogenating n-butene in the second stream to provide a product stream further enriched in butadiene at a second stage effluent temperature above said second-stage inlet temperature. The first reaction zone temperature rise and the second reaction zone temperature rise are at least 200° F. (111° C.
    Type: Grant
    Filed: August 29, 2016
    Date of Patent: July 31, 2018
    Assignee: TPC Group LLC
    Inventors: Jillian M. Horn, Joseph G. Duff, Clifford A. Maat, Robert P. Adams, John J. Senetar
  • Patent number: 9908097
    Abstract: Butadiene is made from a butene rich feed by passing a superheated butene rich feed including superheated steam and oxygen at a temperature of at least about 343° C. (650° F.) over a catalyst bed having a depth of over about 69 cm (27 inches) of granules of ferritic oxidative dehydrogenation catalyst. Inlet conditions being controlled such that the oxidative dehydrogenation reactions initially occur in the lower most layers of catalyst. Process control includes monitoring the temperature throughout the bed and increasing the inlet temperature in response to a drop in the temperature in the active layer, when the active layer of oxidative dehydrogenation catalyst begins to become deactivated so that the reaction zone moves upwardly in the oxidative dehydrogenation bed.
    Type: Grant
    Filed: March 28, 2013
    Date of Patent: March 6, 2018
    Assignee: TPC GROUP LLC
    Inventors: Liana Caciula, Joseph G. Duff, Sirisha Chada, Elizabeth Ballard, Cecil G. McFarland
  • Patent number: 9902669
    Abstract: Oxidative dehydrogenation includes: (a) providing a gaseous feed stream to a catalytic reactor, the feed stream comprising a dehydrogenation reactant, oxygen, superheated steam, hydrocarbon moderator gas and optionally nitrogen, wherein the molar ratio of moderator gas to oxygen in feed stream is typically from 4:1 to 1:1 and the molar ratio of oxygen to nitrogen in the feed stream is at least 2; (b) oxidatively dehydrogenating the reactant in the reactor to provide a dehydrogenated product enriched effluent product stream; and (c) recovering dehydrogenated product from the effluent product stream. One preferred embodiment is a process for making butadiene including dimerizing ethylene to n-butene in a homogeneous reaction medium to provide a hydrocarbonaceous n-butene rich feed stream and oxidatively dehydrogenating the n-butene so formed.
    Type: Grant
    Filed: March 7, 2014
    Date of Patent: February 27, 2018
    Assignee: TPC GROUP LLC
    Inventors: Liana Caciula, Clifford A. Maat, Mark P. Kaminsky, Michael O. Nutt, Jillian M. Horn, Joseph G. Duff
  • Patent number: 9861976
    Abstract: Disclosed herein is a process for the regeneration of oxidative dehydrogenation (OXO-D) catalyst in an alternate or separate regeneration reactor by employing controlled steam:air and time/pressure/temperature conditions. The process avoids destruction of the catalyst, and wear/tear on an OXO-D reactor. The regenerated catalyst is an iron based oxide catalyst which can be zinc or zinc-free. The iron based oxide catalyst is regenerated in the regeneration reactor by feeding an air/steam stream over a set amount of time, preferably about 6 days to yield a regenerated OXO-D catalyst. The regenerated catalyst is activated and re-utilized to produce butadienes.
    Type: Grant
    Filed: March 1, 2017
    Date of Patent: January 9, 2018
    Assignee: TPC Group LLC
    Inventors: Joseph G. Duff, Jillian M. Horn
  • Patent number: 9856335
    Abstract: In one preferred embodiment, the present invention provides a process for the liquid phase polymerization of isobutylene to manufacture highly reactive PIB oligomers having Mn under 1000, using a catalyst composition comprising a Friedel-Crafts catalyst a complexing agent, a chain transfer agent and a polymerization-retarding agent. A chain transfer agent may be selected from: ?-DIB and ?-DIB and mixtures thereof.
    Type: Grant
    Filed: August 16, 2016
    Date of Patent: January 2, 2018
    Assignee: TPC GROUP LLC
    Inventors: Sohel K. Shaikh, Rex Lawson
  • Patent number: 9809665
    Abstract: A process for production of polyisobutylene includes subjecting a reaction admixture comprising isobutylene, a diluent for the isobutylene, which may be isobutane, and a catalyst composition, that may include a BF3/methanol catalyst complex, to reaction conditions suitable for causing at least a portion of the isobutylene to undergo polymerization to form a polyisobutylene product including polyisobutylene molecules. At least a fraction of the polyisobutylene molecules thus produced have alpha position double bonds and the polyisobutylene product has a number average molecular weight (MN) and a polydispersity index (PDI). The concentration of the diluent in the reaction admixture may be manipulated to control or change any one or more of (a) the relative size of the fraction, (b) the number average molecular weight of the product, (c) the polydispersity index of the product and (d) the relative size of the portion.
    Type: Grant
    Filed: March 8, 2011
    Date of Patent: November 7, 2017
    Assignee: TPC GROUP LLC
    Inventors: Klaus R. Menschig, Sohel Shaikh, Sathy R. Ponnuswamy, Rex Lawson
  • Patent number: 9650316
    Abstract: Butadiene is formed by dehydrogenation of butenes which are mixed with steam and oxygen then converted to butadiene by oxidative dehydrogenation over a ferritic oxide catalyst, wherein the sensible heat in the oxidative dehydrogenation reaction product is utilized along with heat produced by thermal oxidation of low value volatile products formed to reduce energy requirements and CO2 emissions. Sensible heat is utilized at high temperature for purposes of superheating feed and at somewhat lower temperatures for purposes of vaporizing feed at sequential locations in the process.
    Type: Grant
    Filed: March 28, 2013
    Date of Patent: May 16, 2017
    Assignee: TPC GROUP LLC
    Inventors: Liana Caciula, Joseph G. Duff, Elizabeth Ballard, Sirisha Chada, Mark J. Potter
  • Publication number: 20170101595
    Abstract: A PIB derivative suitable for use as a fuel additive or lubricant additive prepared from a reactive low molecular weight polyisobutylene composition comprising at least 50 mol percent alpha vinylidene terminated polyisobutylene molecules, the composition having a polydispersity of no more than 1.5 and a number average molecular weight of at least 500 Daltons and no more than 1000 Daltons. The derivative is selected from the group consisting of: alkyl hydroxyaromatic compounds; alkyl alkoxy aromatic compounds; polyisobutenylsuccinic anhydrides; polyisobutenylsuccinimides; PIB-amine compounds; sulfurized PIB compounds; and Mannich condensation products of an alkylated hydroxyaromatic compound.
    Type: Application
    Filed: May 28, 2013
    Publication date: April 13, 2017
    Applicant: TPC Group LLC
    Inventors: Sohel K. Shaikh, Jennifer Leigh Sengstock