Abstract: A sensor for determining a direction-of-arrival of radiation impingent on the sensor which has antennas positioned in a particular set-up different from a rectangle, so that information may be derived between two pairs of the antennas, positioned in corners of a rectangular grid and additional information may be derived from an additional antenna, combined with one of the “grid” antennas forming a third pair of antennas. The additional antenna is positioned away from the corners and other pre-defined lines of the rectangle/grid. In this manner, such as from phase differences between the pairs of antennas, more information may be derived compared to antennas positioned merely at the corners of a rectangle to remove ambiguous angles of direction-of-arrival without compromising accuracy of an angular determination.
Abstract: A method and apparatus for determining a deviation between an actual direction of a launched projectile and a predetermined direction includes providing, using a camera fixed to a radar, an image representing a target area, receiving an indication of a position in the image, the indicated position corresponding to a position in the target area, determining, using a radar, the actual direction of the projectile, determining a launch position of the projectile, determining, from the launch position and the corresponding position, the predetermined direction and determining the deviation between the actual direction of the projectile and the predetermined direction. The indicating step include rotating the camera and radar to have the position in the target area presented at a center or with a predetermined offset form the center in the image.
Abstract: A system for illustrating the flight of a sports ball includes a radar, an imager, and a controller. The imager is configured to image a moving sports ball. The controller is configured to (i) receive, from the imager, an image including the moving sports ball, (ii) receive, from the radar, radar data associated with the moving sports ball, (iii) determine, from the radar data, a portion of a trajectory of the moving sports ball, (iv) alter the image to illustrate the portion of the trajectory relative to the moving sports ball, and (v) output the altered image.
Abstract: A method of determining spin parameters of a sports ball, such as spin axis and rotation velocity of a golf ball. The spin axis is determined solely from the trajectory of the flying ball, and the rotational velocity is determined from a frequency analysis of a signal provided by a radar, which signal comprises spectrum traces positioned equidistantly in frequency, which frequency distance relates to the spin velocity.
Abstract: A system for coordinating radar data and image data to track a flight of a projectile includes a radar, an imager, and a controller. The imager provides an image of an area into which a projectile is to be launched. The controller receives the image and an identification of a target within the image and identifies a target line connecting the target and a launch position of the projectile. The controller also receives data from the radar relative to at least a portion of a trajectory of the projectile, generates image based trajectory data by correlating the radar data and the image, and alters the image to include the image based trajectory data within the image and the target line within the image.
Abstract: A system for illustrating the flight of a sports ball includes a radar, an imager, and a controller. The imager is configured to image a moving sports ball. The controller is configured to (i) receive, from the imager, an image including the moving sports ball, (ii) receive, from the radar, radar data associated with the moving sports ball, (iii) determine, from the radar data, a portion of a trajectory of the moving sports ball, (iv) alter the image to illustrate the portion of the trajectory relative to the moving sports ball, and (v) output the altered image.
Abstract: An assembly comprising a radar and a camera for both deriving data relating to a golf ball and a golf club at launch, radar data relating to the ball and club being illustrated in an image provided by the camera. The data illustrated may be trajectories of the ball/club/club head, directions and/or angles, such as an angle of a face of the golf club striking the ball, the lie angle of the club head or the like. An assembly of this type may also be used for defining an angle or direction in the image and rotating e.g. an image of the golfer to have the determined direction or angle coincide with a predetermined angle/direction in order to be able to compare different images.
Abstract: In a method of determining a deviation of a path of a projectile from a predetermined path, the method uses an image of a target area in which the desired path or direction is pointed out. Subsequently, the real direction or real path is determined and the deviation is determined.
Abstract: A method of determining spin parameters of a spot ball, such as spin axis and rotation velocity of a golf ball. The spin axis is determined solely from the trajectory of the flying ball, and the rotational velocity is determined from a frequency analysis of a signal provided by a radar, which signal comprises spectrum traces positioned equidistantly in frequency, which frequency distance relates to the spin velocity.
Abstract: A method of determining a deviation of a path of a projectile from a predetermined path. The method uses an image of a target area in which the desired path or direction is pointed out. Subsequently, the real direction or path is determined and the deviation determined.
Abstract: An assembly comprising a radar and a camera for both deriving data relating to a golf ball and a golf club at launch, radar data relating to the ball and club being illustrated in an image provided by the camera. The data illustrated may be trajectories of the ball/club/club head, directions and/or angles, such as an angle of a face of the golf club striking the ball, the lie angle of the club head or the like. An assembly of this type may also be used for defining an angle or direction in the image and rotating e.g. an image of the golfer to have the determined direction or angle coincide with a predetermined angle/direction in order to be able to compare different images.