Abstract: Molecular precursor compounds, processes and compositions for making Zn-Group 13 mixed oxide materials including IZO, GZO, AZO and BZO, by providing inks comprising a molecular precursor compound having the formula MAaZn(OROR)3a+2, and printing or depositing the inks on a substrate. The printed or deposited ink films can be treated to convert the molecular precursor compounds to a material.
Abstract: Lithium-iron molecular precursor compounds, compositions and processes for making a cathode for lithium ion batteries. The molecular precursor compounds are soluble and provide processes to make stoichiometric cathode materials with solution-based processes. The cathode material can be, for example, a lithium iron oxide, a lithium iron phosphate, or a lithium iron silicate. Cathodes can be made as bulk material in a solid form or in solution, or in various forms including thin films.
Type:
Grant
Filed:
June 27, 2013
Date of Patent:
November 8, 2016
Assignee:
Transtron Solutions LLC
Inventors:
Kyle L. Fujdala, Zhongliang Zhu, Paul R. Markoff Johnson
Abstract: Molecular precursor compounds, processes and compositions for making Zn-Group 13 mixed oxide materials including ABIGZO, AIGZO and BAIZO, by providing inks comprising a molecular precursor compound having the empirical formula AlaInbGacBdZn(OROR)3(a+b+c+d)+2, and printing or depositing an ink on a substrate. The printed or deposited film can be treated to convert the molecular precursor compounds to a material.
Abstract: Molecular precursor compounds, compositions, inks and processes for making IGZO materials. Inks made from molecular precursor compounds having the empirical formula InbGacZn(OROR)3(b+c)+2 can be printed or deposited on a substrate. The printed or deposited film can be treated to convert the molecular precursor compounds to an IGZO material.