Patents Assigned to Trellis Phase Communications, LP
  • Patent number: 9362955
    Abstract: Serially-concatenated codes are formed in accordance with the present invention using a constrained interleaver. The constrained interleaver cause the minimum distance of the serial concatenated code to increase above the minimum distance of the inner code alone by adding a constraint that forces some or all of the distance of the outer code onto the serially-concatenated code. This allows the serially-concatenated code to be jointly optimized in terms of both minimum distance and error coefficient to provide significant performance advantages. These performance advantages allow a noise margin target to be achieved using simpler component codes and a much shorter interleaver than was needed when using prior art codes such as Turbo codes. Decoders are also provided. Both encoding and decoding complexity can be lowered, and interleavers can be made much shorter, thereby shortening the block lengths needed in receiver elements such as equalizers and other decision-directed loops.
    Type: Grant
    Filed: August 2, 2013
    Date of Patent: June 7, 2016
    Assignee: Trellis Phase Communications, LP
    Inventors: John P Fonseka, Eric Morgan Dowling
  • Patent number: 9240808
    Abstract: Serially-concatenated codes are formed in accordance with the present invention using a constrained interleaver. The constrained interleaver cause the minimum distance of the serial concatenated code to increase above the minimum distance of the inner code alone by adding a constraint that forces some or all of the distance of the outer code onto the serially-concatenated code. This allows the serially-concatenated code to be jointly optimized in terms of both minimum distance and error coefficient to provide significant performance advantages.
    Type: Grant
    Filed: August 2, 2013
    Date of Patent: January 19, 2016
    Assignee: Trellis Phase Communications, LP
    Inventors: John P Fonseka, Eric Morgan Dowling
  • Patent number: 8537919
    Abstract: Serially-concatenated codes are formed in accordance with the present invention using a constrained interleaver. The constrained interleaver cause the minimum distance of the serial concatenated code to increase above the minimum distance of the inner code alone by adding a constraint that forces some or all of the distance of the outer code onto the serially-concatenated code. This allows the serially-concatenated code to be jointly optimized in terms of both minimum distance and error coefficient to provide significant performance advantages. These performance advantages allow a noise margin target to be achieved using simpler component codes and a much shorter interleaver than was needed when using prior art codes such as Turbo codes. Decoders are also provided. Both encoding and decoding complexity can be lowered, and interleavers can be made much shorter, thereby shortening the block lengths needed in receiver elements such as equalizers and other decision-directed loops.
    Type: Grant
    Filed: November 24, 2010
    Date of Patent: September 17, 2013
    Assignee: Trellis Phase Communications, LP
    Inventors: John P Fonseka, Eric Morgan Dowling
  • Patent number: 8532209
    Abstract: Serially-concatenated codes are formed in accordance with the present invention using a constrained interleaver. The constrained interleaver cause the minimum distance of the serial concatenated code to increase above the minimum distance of the inner code alone by adding a constraint that forces some or all of the distance of the outer code onto the serially-concatenated code. This allows the serially-concatenated code to be jointly optimized in terms of both minimum distance and error coefficient to provide significant performance advantages.
    Type: Grant
    Filed: October 22, 2012
    Date of Patent: September 10, 2013
    Assignee: Trellis Phase Communications, LP
    Inventors: John P. Fonseka, Eric Morgan Dowling
  • Patent number: 8532229
    Abstract: Two decoding algorithms are introduced for the decoding of multi-level coded modulation and other types of coded modulation involving component codes and interleaving operations. An improved hard iterative decoding (IHID) algorithm is presented that improves upon a hard iteration decoding technique by adding a stopping criterion. Also, a list Viterbi hard iteration decoding (LV-IHID) algorithm is presented that employs list decoding in conjunction with the IHID algorithm. Both of these decoding algorithms improve upon conventional multi-stage decoding by reducing the effective error multiplicity that is observed at the lowest coding level. It is demonstrated that the LV-IHID algorithm performs close to soft iterative decoding. The computational and delay complexity of the proposed decoding algorithms compare favorably with soft iterative decoding strategies. Also, a novel labeling strategy for MLC design is presented.
    Type: Grant
    Filed: August 24, 2009
    Date of Patent: September 10, 2013
    Assignee: Trellis Phase Communications, LP
    Inventors: Eric Morgan Dowling, John P. Fonseka
  • Patent number: 7769096
    Abstract: A quadrature-multiplexed continuous phase modulation (QM-CPM) signal is made up of the real parts of two underlying CPM signals whose information content can be recovered from just their real parts. The real parts of two such signals are I/Q multiplexed and transmitted onto a single channel to approximately double the bits/Hz of the underlying CPM signals, while maintaining the same or similar minimum distance. A class of QM-CPFSK (QM-continuous phase frequency shift keyed) signals are presented that use binary signaling but more phase states, and M2-ary QM-CPFSK signals are derived from constant envelope M-ary CPFSK signals. M2-ary multi-amplitude CPFSK signaling schemes are constructed that maintain the same distance as known multi-amplitude CPFSK schemes, but more than double the bandwidth efficiency in bits/Hz. In addition to these CPFSK based embodiments, embodiments are provided that more generally use CPM, non-continuous phase modulated signals, and even trellis-based PAM based signals.
    Type: Grant
    Filed: November 22, 2006
    Date of Patent: August 3, 2010
    Assignee: Trellis Phase Communications, LP
    Inventors: John P. Fonseka, Eric Morgan Dowling
  • Patent number: 7609614
    Abstract: The present invention centers upon uplink communication protocols for use primarily with orthogonal frequency division multiple access (OFDMA) communication systems. Aspects of the invention relate to narrow band frequency division multiplexed (NBFDM) modulation protocols primarily for uplink usage in asymmetric OFDMA communication systems. In particular, NBFDM uplinks that use quadrature multiplexed continuous phase modulation are detailed and noncoherent detection schemes are developed to process the uplink channel signals without the need to transmit uplink phase reference signals. Other aspects of the invention relate to burst mode uplink communications in OFDMA systems such as those involving opportunistic beamforming.
    Type: Grant
    Filed: March 14, 2006
    Date of Patent: October 27, 2009
    Assignee: Trellis Phase Communications, LP
    Inventors: John P. Fonseka, Eric Morgan Dowling
  • Patent number: 7532676
    Abstract: A class of bandwidth reduction techniques are used develop a broad class of modulation types collectively called SSB-FM. These signals can be used to construct communication systems that provide bandwidth-normalized performance gains of 10 dB or more when compared to popular prior art modulation methods. An aspect of the invention involves mapping trellis paths in a complex signal space onto corresponding real-valued trellis signals with desirable spectral properties. The invention can be used map continuous phase modulated (CPM) signals onto simpler amplitude-modulated trellis signals having double the channel capacity of prior art CPM signals. Multi-amplitude signaling and frequency division multiplexing may also be incorporated to further accommodate more information per symbol.
    Type: Grant
    Filed: October 20, 2005
    Date of Patent: May 12, 2009
    Assignee: Trellis Phase Communications, LP
    Inventors: John P. Fonseka, Eric Morgan Dowling