Abstract: The invention provides methods for generating a library of bi-ligands, comprising (a) determining a common ligand to a conserved site in a receptor family; (b) attaching an expansion linker to the common ligand, wherein the expansion linker has sufficient length and orientation to direct a second ligand to a specificity site of a receptor in the receptor family, to form a module; and (c) generating a population of bi-ligands comprising a plurality of identical modules attached to variable second ligands. The invention also provides methods for identifying a bi-target ligand to a receptor by combining a first bi-ligand to a first receptor in a receptor family and a second bi-ligand to a second receptor in the receptor family. The invention additionally provides bi-ligands and bi-target ligands.
Abstract: The invention provides methods for generating a library of bi-ligands, comprising (a) determining a common ligand to a conserved site in a receptor family; (b) attaching an expansion linker to the common ligand, wherein the expansion linker has sufficient length and orientation to direct a second ligand to a specificity site of a receptor in the receptor family, to form a module; and (c) generating a population of bi-ligands comprising a plurality of identical modules attached to variable second ligands. The invention also provides methods for identifying a bi-target ligand to a receptor by combining a first bi-ligand to a first receptor in a receptor family and a second bi-ligand to a second receptor in the receptor family. The invention additionally provides bi-ligands and bi-target ligands.
Abstract: Methods for rapidly identifying drug candidates that bind to an enzyme at both a common ligand site and a specificity ligand site, resulting in high affinity binding. The bi-ligand drug candidates are screened from a focused combinatorial library where the specific points of variation on a core structure are optimized. The optimal points of variation are identified by which atoms of a ligand bound to the common ligand site are identified to be proximal to the specificity ligand site. As a result, the atoms proximal to the specificity ligand site can then be used as a point for variation to generate a focused combinatorial library of high affinity drug candidates that bind to both the common ligand site and the specificity ligand site. Different candidates in the library can then have high affinity for many related enzymes sharing a similar common ligand site.
Abstract: The invention provides methods for generating a library of bi-ligands, comprising (a) determining a common ligand to a conserved site in a receptor family; (b) attaching an expansion linker to the common ligand, wherein the expansion linker has sufficient length and orientation to direct a second ligand to a specificity site of a receptor in the receptor family, to form a module; and (c) generating a population of bi-ligands comprising a plurality of identical modules attached to variable second ligands. The invention also provides methods for identifying a bi-target ligand to a receptor by combining a first bi-ligand to a first receptor in a receptor family and a second bi-ligand to a second receptor in the receptor family. The invention additionally provides bi-ligands and bi-target ligands.
Abstract: The invention provides methods for generating a library of bi-ligands, comprising (a) determining a common ligand to a conserved site in a receptor family; (b) attaching an expansion linker to the common ligand, wherein the expansion linker has sufficient length and orientation to direct a second ligand to a specificity site of a receptor in the receptor family, to form a module; and (c) generating a population of bi-ligands comprising a plurality of identical modules attached to variable second ligands. The invention also provides methods for identifying a bi-target ligand to a receptor by combining a first bi-ligand to a first receptor in a receptor family and a second bi-ligand to a second receptor in the receptor family. The invention additionally provides bi-ligands and bi-target ligands.