Abstract: The described positional awareness techniques employing sensory data gathering and analysis hardware with reference to specific example implementations implement improvements in the use of sensors, techniques and hardware design that can enable specific embodiments to provide positional awareness to machines with improved speed and accuracy. The sensory data are gathered from an operational camera and one or more auxiliary sensors.
Abstract: The described positional awareness techniques employing visual-inertial sensory data gathering and analysis hardware with reference to specific example implementations implement improvements in the use of sensors, techniques and hardware design that can enable specific embodiments to provide positional awareness to machines with improved speed and accuracy.
Abstract: The described positional awareness techniques employing sensory data gathering and analysis hardware with reference to specific example implementations implement improvements in the use of sensors, techniques and hardware design that can enable specific embodiments to find new area to cover by a robot encountering an unexpected obstacle traversing an area in which the robot is performing an area coverage task. The sensory data are gathered from an operational camera and one or more auxiliary sensors.
Type:
Application
Filed:
April 8, 2024
Publication date:
October 24, 2024
Applicant:
TRIFO, INC.
Inventors:
Zhe ZHANG, Weikai LI, Qingyu CHEN, Yen-Cheng LIU
Abstract: The described positional awareness techniques employing visual-inertial sensory data gathering and analysis hardware with reference to specific example implementations implement improvements in the use of sensors, techniques and hardware design that can enable specific embodiments to provide positional awareness to machines with improved speed and accuracy.
Abstract: The described positional awareness techniques employing sensory data gathering and analysis hardware with reference to specific example implementations implement improvements in the use of sensors, techniques and hardware design that can enable specific embodiments to find new area to cover by a robot performing an area coverage task of an unexplored area. The sensory data are gathered from an operational camera and one or more auxiliary sensors.
Type:
Grant
Filed:
September 27, 2023
Date of Patent:
October 1, 2024
Assignee:
TRIFO, INC.
Inventors:
Zhe Zhang, Qingyu Chen, Yen-Cheng Liu, Weikai Li
Abstract: The described positional awareness techniques employing visual-inertial sensory data gathering and analysis hardware with reference to specific example implementations implement improvements in the use of sensors, techniques and hardware design that can enable specific embodiments to provide positional awareness to machines with improved speed and accuracy.
Abstract: The described positional awareness techniques employing visual-inertial sensory data gathering and analysis hardware with reference to specific example implementations implement improvements in the use of sensors, techniques and hardware design that can enable specific embodiments to provide positional awareness to machines with improved speed and accuracy.
Abstract: The described positional awareness techniques employing sensory data gathering and analysis hardware with reference to specific example implementations implement improvements in the use of sensors, techniques and hardware design that can enable specific embodiments to find new area to cover by a robot encountering an unexpected obstacle traversing an area in which the robot is performing an area coverage task. The sensory data are gathered from an operational camera and one or more auxiliary sensors.
Type:
Grant
Filed:
April 25, 2022
Date of Patent:
April 9, 2024
Assignee:
Trifo, Inc.
Inventors:
Zhe Zhang, Weikai Li, Qingyu Chen, Yen-Cheng Liu
Abstract: The described positional awareness techniques employing visual-inertial sensory data gathering and analysis hardware with reference to specific example implementations implement improvements in the use of sensors, techniques and hardware design that can enable specific embodiments to provide positional awareness to machines with improved speed and accuracy.
Abstract: The described positional awareness techniques employing sensory data gathering and analysis hardware with reference to specific example implementations implement improvements in the use of sensors, techniques and hardware design that can enable specific embodiments to provide positional awareness to machines with improved speed and accuracy. The sensory data are gathered from an operational camera and one or more auxiliary sensors.
Abstract: The described positional awareness techniques employing visual-inertial sensory data gathering and analysis hardware with reference to specific example implementations implement improvements in the use of sensors, techniques and hardware design that can enable specific embodiments to provide positional awareness to machines with improved speed and accuracy.
Abstract: The described positional awareness techniques employing visual-inertial sensory data gathering and analysis hardware with reference to specific example implementations implement improvements in the use of sensors, techniques and hardware design that can enable specific embodiments to provide positional awareness to machines with improved speed and accuracy.
Abstract: The described positional awareness techniques employing visual-inertial sensory data gathering and analysis hardware with reference to specific example implementations implement improvements in the use of sensors, techniques and hardware design that can enable specific embodiments to provide positional awareness to machines with improved speed and accuracy.
Abstract: The technology disclosed includes systems and methods for preparing a segmented occupancy grid map based upon image information of an environment in which a robot moves. The image information is captured by at least one visual spectrum-capable camera and at least one depth measuring camera. The system includes logic to receive image information captured by at least one visual spectrum-capable camera and location information captured by at least one depth measuring camera located on a mobile platform. The system includes logic to extract from the image information, features in the environment. The system includes logic to determine a 3D point cloud of points having 3D information. The system includes logic to determine, from the 3D point cloud, an occupancy map of the environment. The system includes logic to segment the occupancy map into a segmented occupancy map of regions that represent rooms and corridors in the environment.
Abstract: The technology disclosed includes systems and methods for using a deep learning trained classifier to detect obstacles and pathways in an environment in which a robot moves. The system includes logic to receive image information captured by at least one visual spectrum-capable camera and location information captured by at least one depth measuring camera located on a mobile platform. The system includes logic to determine a three-dimensional 3D point cloud of points having 3D information. The system can determine, using an ensemble of trained neural network classifiers, an identity for objects. The system includes logic to determine an occupancy map of the environment. The system includes logic to provide the occupancy map to a process for initiating robot movement to avoid objects in the occupancy map of the environment.
Abstract: The described positional awareness techniques employing sensory data gathering and analysis hardware with reference to specific example implementations implement improvements in the use of sensors, techniques and hardware design that can enable specific embodiments to find new area to cover by a robot performing an area coverage task of an unexplored area. The sensory data are gathered from an operational camera and one or more auxiliary sensors.
Type:
Grant
Filed:
December 20, 2019
Date of Patent:
October 3, 2023
Assignee:
Trifo, Inc.
Inventors:
Zhe Zhang, Qingyu Chen, Yen-Cheng Liu, Weikai Li
Abstract: The described positional awareness techniques employing sensory data gathering and analysis hardware with reference to specific example implementations implement improvements in the use of sensors, techniques and hardware design that can enable specific embodiments to provide positional awareness to machines with improved speed and accuracy. The sensory data are gathered from an operational camera and one or more auxiliary sensors.
Abstract: The described positional awareness techniques employing visual-inertial sensory data gathering and analysis hardware with reference to specific example implementations implement improvements in the use of sensors, techniques and hardware design that can enable specific embodiments to provide positional awareness to machines with improved speed and accuracy.
Abstract: The described positional awareness techniques employing visual-inertial sensory data gathering and analysis hardware with reference to specific example implementations implement improvements in the use of sensors, techniques and hardware design that can enable specific embodiments to provide positional awareness to machines with improved speed and accuracy.
Abstract: The described positional awareness techniques employing visual-inertial sensory data gathering and analysis hardware with reference to specific example implementations implement improvements in the use of sensors, techniques and hardware design that can enable specific embodiments to provide positional awareness to machines with improved speed and accuracy.