Abstract: Provided herein are methods for ligation of polynucleotides containing modified ligation components, particularly modified ligase cofactors, modified acceptors and modified donors. The methods readily applied to ligation-based assays for detection of a nucleic acid sequence where the use of the modified cofactor improves discrimination between matched and mismatched templates. Furthermore, the use of the modified ligation components reduces or eliminates the ligation in the absence of nucleic acid template. In addition, methods are applied to the preparation of nucleic acid libraries using modified acceptor probes and modified donor probes that reduce or eliminate probe dimerization during the ligation process.
Abstract: Provided herein are methods for ligation of polynucleotides containing modified ligation components, particularly modified ligase cofactors, modified acceptors and modified donors. The methods readily applied to ligation-based assays for detection of a nucleic acid sequence where the use of the modified cofactor improves discrimination between matched and mismatched templates. Furthermore, the use of the modified ligation components reduces or eliminates the ligation in the absence of nucleic acid template. In addition, methods are applied to the preparation of nucleic acid libraries using modified acceptor probes and modified donor probes that reduce or eliminate probe dimerization during the ligation process.
Abstract: The present invention provides methods and compositions for nucleic acid amplification. These methods involve the use of oligonucleotide primers in temperature dependent nucleic acid amplification reactions. In certain aspects, the methods are accomplished by use of certain modified oligonucleotide primers which provide utility in nucleic acid amplification. In preferred embodiments, the oligonucleotide primers are modified with particular chemical groups such as esters.
Abstract: The present invention provides a variety of compositions that comprise an activated carboxylic ester moiety on one end of an alkyl tether and a nucleic acid binding moiety on the other end for use as crosslinking reagents in conjugation reactions of nucleotides with solid support matrixes, organic molecules, reporter groups or other biomolecules.